Схема сигнализатора перегорания лампы в автомобиле. Электрическая схема скутера

В описаны схемы, которые позволяют продлить жизнь дневного света (ЛДС). Они, безусловно, заслуживают внимания, привлекают своей простотой, доступностью и могут быть рекомендованы для повторения. Но при повторении этих схем надобно иметь в виду, что нить накаливания ЛДС, которая остается "живой", работает с перегрузкой, поскольку перегоревшая нить накаливания шунтирована "проволочной перемычкой". Такой форсированный режим работы из-за уменьшения сопротивления цепи нитей накаливания в два раза приводит к ее быстрому износу, и она выходит из строя. Кроме того, "реанимации", приведенная в , требует дополнительной установки пусковой кнопки, поэтому при менеджменте ЛДС с помощью настенного выключателя возникает проблема - где же разместить эту пусковую кнопку, чтобы включать лампу, установленную на потолке? ...

Для схемы "Бесконтактный индикатор фазы"

Если неоновую лампу взять за стеклянный корпус и коснуться одним из ее выводов фазного провода электросети, лампа начинает светиться. Ток, вызывающий свечение, протекает через электрическую емкость между пальцами и внутренними электродами лампы. Этот результат можно использовать для изготовления простейшего индикатора фазного провода. К одному из выводов лампы припаивают металлический штырь. Следует остановить свой выбор тот вывод, при использовании которого получается наиболее яркое свечение. На цоколь лампы надевают слегка растянутую ПВХ трубку. Полость в трубке с помощью соломинки от коктейля заполняют эпоксидным клеем (см. рисунок). В индикаторе можно использовать самые разнообразные малогабаритные лампы: ТН-0,5; МН-6, тиратрон МТХ-90 и др. Чувствительность индикатора несколько ниже, чем у традиционного индикатора с резистором. С.Л. Дубовой, г.Санкт-Петербург, Россия. ...

Для схемы "Сигнализатор уровня напряжения в сети"

Предлагаю простейший сигнализатор выхода напряжения в сети за установленные пределы. Его показана на рисунке. Резистор R2 подбирают таким, чтобы неоновая лампа HL1 была включена только при напряжении в сети более 190 В. А подборкой резистора R4 добиваются включения HL2 лишь при напряжении, превышающем 240 В. Таким образом, при напряжении менее 190 В выключены, в интервале 190...240 В светит одна из них, а при ещё большем напряжении - обе.В приборе можно применить неоновые лампы не только указанного на схеме типа, но и любые другие с рабочим током не более 1...2 мА.Я. МАНДРИК, г. Черновцы, Украина...

Для схемы "Об использовании ламп дневного света с перегоревшими нитями"

В радиолюбительских журналах часто публиковали различные схемы использования ламп дневного света с перегоревшими нитями накала. Автор опробовал все такие схемы на практике. Используя опыт этих испытаний и ряд доработок, автор остановился на схеме, показанной на рисунке. Дроссель Др1 нужно использовать только соответствующей лампе дневного света мощности. Если под рукой нет такого дросселя, предлагаю следующий вариант: для лампы 20 (18) Вт соединить последовательно два 40-ваттных дросселя; для лампы 40 (30) Вт - последовательно два 80-ваттных дросселя или параллельно два 20-ваттных дросселя. Конденсаторы нужно использовать бумажные типа КБГ(И) или подобные с рабочим напряжением не менее 600 В, так как в момент включения именно такие напряжения на них появляются. Это и обеспечивает поджег лампы. Затем напряжение падает до 250-270 В, и лампа дневного света устойчиво горит. У описанной схемы есть один недостаток: Один-два раза в год лампу нужно переворачивать (сигналом является нестабильное зажигание лампы). Зато описанная схема включения имеет ряд достоинств: используются перегоревшие лампы, которые обычно выбрасывают; лампа питается постоянным током, что благоприятно для глаз; высокая долговечность (у автора некоторые лампы работают уже по 15 лет). 0. Г. Рашитов. г.Киев...

Для схемы "Детектор скрытой проводки"

Бытовая электроникаДетектор скрытой проводкиОдним из самых простых устройств является детектор скрытой проводки, представленный на рис.1. Резистор R 1 нужен для защиты микросхемы К561ЛА7 от повышенного напряжения статического электричества, но, как показала практика, его можно и не ставить. Антенной является кусок обычного медного провода любой толщины. Главное, чтобы он не прогибался под собственным весом, т.е. был довольно жестким. Длина антенны определяет чувствительность устройства. Наиболее оптимальной является величина 5...15 см. При приближении антенны к электропроводке детектор издает характерный треск. Таким устройством очень удобно определять местоположение перегоревшей лампы в елочной гирлянде - около нее треск прекращается. Пьезоизлучатель типа ЗП-3 включен по мостовой схеме, что обеспечивает повышенную громкость "треска". На рис.2 изображен более сложный детектор, имеющий, кроме звуковой. Каталок схема печатни плата золотаискателязе ещё и световую индикацию. Сопротивление резистора R1 должно быть не менее 50 МОм. В цепи светодиода VD1 токоограничивающего резистора нет. так как микросхема DD1 (К561ЛА7) с этой функцией хорошо справляется сама. Если входные токи элемента D 1.1 позволяют, то убрав резистор R1 из схемы, изображенной на рис.2, мы получим устройство, реагирующее на изменение статического потенциала в окружающем пространстве. Для этого антенну WA1 делают длиной 50...100 см. используя любой провод. Теперь устройство будет реагировать на движение человеческого тела. Положив такое устройство в сумку, получим автономное охранное устройство, выдающее световые и звуковые сигналы, если с сумкой или приблизительно нее происходят какие-либо манипуляции....

Для схемы "Индикация подключения электроприборов к сети 220 В"

Устройство индикации позволяет контролировать при уходе из дома: выключены ли из сети электрорадиоприборы? Если в сети осталась включенной какая-либо нагрузка мощностью > 8 Вт, то светят оба светодиода HL1 и HL2 (см.рисунок). ...

Для схемы "Устройство защиты нитей ламп накаливания фар"

Для схемы "Защита электроосветительных приборов"

Бытовая электроникаЗащита электроосветительных приборовВ.БАННИКОВг.МоскваВ статье Мягкая нагрузка в электросети (Радио, 1988, № 10, с. 61) описано устройство для плавного нагрузки к электросети переменного тока. Подобные устройства с успехом могут быть применены для коммутации электроосветительных приборов. Как понятно, сопротив ление нити накаливания в холодном состоянии немаловажно меньше, чем в нагретом. Именно поэтому накаливания чаще всего выходят из строя в момент включения. При мягком подключении ток через нить увеличивается плавно, не достигая экстремального значения, поэтому продолжительно вечность неизмеримо возрастает. Автоматическое отключение радиоаппаратуры Однако реализация упомянутых устройств сопряжена с рядом затруднений. Во-первых, требуется применение оксидных конденсаторов большой емкости, которые в целях безопас ности должны быть рассчитаны на напряжение не менее 400 В. Это приводит к существенному подъему габаритов устройства. Во-вторых, тот факт, что выключатель встроен в само устройство, заставляет прокладывать дополнительные подводящие провода. Во многих случаях это усложняет конструкцию, так как пользоваться имеющимся выключателем готового осветительного прибора. (например, торшера или люстры с кнопкой, смонтированной на шнуре питания) оказывается, как правило, невозможно. Обойти перечисленные трудности позволяет устройство, описанное ниже. Оно (см. схему) выполнено в виде дву-полюсника. Это позволяет разместить плату с его деталями в любом...

Для схемы "Защита ламп накаливания"

Не секрет, что галогенные лампы, применяемые в авто, нередко выходят из строя. Происходит это в результате броска тока, возникающего в результате того, что спираль накаливания в холодном состоянии обладает малым сопротивлением. Вот ослепительный пример: автомобильная галогенная лампа, применяемая в противотуманных фарах, потребляет в нормальном режиме 55 Вт (при 12 В питания), следовательно, сопротивление нити накала в нагретом состоянии будет составлять приблизительно 2,6 Ом. На самом же деле сопротивление, измеренное омметром, чуть превышает 0,2 Ом. В результате бросок тока составит 60 А! Для продления срока службы ламп накаливания в авто и иной низковольтной аппаратуре и служит предлагаемое устройство. Время плавного разогрева - выхода на режим зависит от сопротивления резистора R1 и емкости конденсатора С1, и при указанных на схеме номиналах составляет приблизительно 2,5 с. Дроздов схемы трансиверов Напряжение насыщения составного транзистора VT1, VT2 можно устанавливать вращением ротора резистора R2. Это позволяет подобрать необходимое пора выхода на режим, в зависимости от мощности нагрузки в интервале от нуля до максимальной задержки. Транзисторы VT1 и VT2 нужно установить на общий теплоотвод площадью приблизительно 100 см2, при токе потребляемом лампой до 6 А. Выбор силового транзистора КТ872А не случаен. Данный транзистор производства НПО "Транзистор" (г. Минск) способен выдерживать длительное пора значительные броски тока при среднем токе до 10 А. Если переключатель SA1 сменить перемычкой, а последовательно с резистором R1 включить микротумблер или микрокнопку - появляется дополнительное удобство-отсутствие мощного силового выключателя. Его роль теперь выполняет силовой транзистор.А.ФИЛИПОВИЧ, Минская обл., г. Дзержинск...

Электроника для автомобиля

В. ХРОМОВ, г. Красноярск
Радио, 2002 год, № 2

Датчиком в контролирующих устройствах обычно служит токоизмеритель-ный резистор , что нередко ограничивает их применение, например, из-за большого падения напряжения в контролируемой цепи и бесполезной мощности, рассеиваемой датчиком тока. В эти недостатки сведены к минимуму, но путем усложнения схемы.

В предлагаемом устройстве применен иной способ контроля тока в цепи ламп - релейный, использующий гистерезис электромагнитного реле и присущий лампе накаливания пусковой импульс тока при ее включении. Этот способ позволяет уменьшить падение напряжения в контролируемой цепи до пренебрежимо малого значения. В отличие от описанных ранее устройств, оно индицирует три состояния ламп.

Принципиальная схема контролера ламп стоп-сигнала представлена на рис. 1. Датчиком тока служит герконовое реле К1, обмотка которого включена последовательно в цепь сигнальных ламп HL2, HL3. На логических элементах DD1.1, DD1.2 собран управляемый генератор импульсов с периодом около 0,5 с. Элемент DD1.3 - электронный переключатель, срабатывающий с временной задержкой. Транзистор VT1 - усилитель тока, нагруженный светодиодом HL1.

Когда педаль тормоза не нажата и контакты SF1, связанные с ней, разомкнуты, работает только генератор импульсов. Нижний по схеме вход элемента DD1.3 через резисторы R4, R5 соединен с общим проводом. Поэтому импульсы через этот элемент не проходят и на его выходе - высокий уровень. Низкий уровень на выходе инвертора DD1.4 закрывает транзистор VT1 - светодиод НL1 выключен.

При нажатии на педаль тормоза она замыкает контакты SF1 и ток от бортовой сети начинает протекать через предохранитель FU1 автомобиля, обмотку К1 и лампы HL2, HL3. Если при этом обе лампы исправны, то их пусковой ток, хоть и краткий, но больший номинального почти в десять раз, приводит к надежному срабатыванию реле К1.

Контакты К1.1 геркона замыкаются, напряжение питания с резистивного делителя R1R2 через диод VD1 поступает на объединенные входы элемента DD1.1 и блокирует работу генератора, причем на выходе элемента DD1.2 фиксируется высокий уровень. Номиналы резисторов R1, R2 выбраны таким образом, чтобы при сравнительно небольшом токе через геркон напряжение, снимаемое с делителя, соответствовало единичному уровню.

Через короткий промежуток времени ток в цепи ламп уменьшится до номинального значения, но геркон К1.1 остается замкнутым, поскольку номинальный ток двух ламп HL2 и HL3 больше тока отпускания реле К1.

По истечении времени Τ=R4-C2 (около секунды) с момента нажатия на педаль тормоза напряжение на конденсаторе С2 увеличивается до порога переключения элемента DD1.3. На выходе элемента появляется низкий, а на выходе инвертора DD1.4 - высокий уровень, открывающий транзистор VT1. Светодиод включается, индицируя исправность ламп.

После отпускания педали гаснут лампы HL2, HL3, обесточивается обмотка К1 и геркон размыкается, разрешая работу генератора. Его импульсы периодически закрывают транзистор VT1, поэтому светодиод мигает.

Конденсатор С2 разряжается через резистор R4, обмотку реле К1 и лампы HL2, HL3, и через некоторое время, когда напряжение на нем уменьшится до порога переключения элемента DD1.3, импульсы перестанут проходить на вход инвертора. Транзистор открываться не будет, светодиод погаснет. Такой режим индикации позволяет убедиться в исправности ламп и одновременно в работе генератора.

Если же при нажатии на педаль тормоза неисправной оказалась одна лампа (перегорела или нарушился контакт в патроне), то реле сначала сработает под действием пускового тока второй - исправной - лампы. Но номинального тока одной лампы недостаточно для удержания геркона замкнутым, и он размыкается. Этот процесс длится несколько десятков миллисекунд и на индикации никак не отражается. Через секунду элемент DD1.3 начнет пропускать импульсы от генератора и светодиод начнет мигать. При отпускании педали тормоза процесс аналогичен рассмотренному выше.

В случае, когда одна за другой вышли из строя обе лампы или произошел обрыв цепи их питания, геркон вообще не замкнется и светодиод будет мигать, как и при одной неисправной лампе.

Случается, что перегорает предохранитель FU1 (или окисляются его контакты). Тогда питающее напряжение не поступает на устройство и при нажатии на педаль тормоза индикация отсутствует полностью.

В качестве индикатора можно, конечно, использовать и лампу накаливания, однако надежность светодиода выше.

В контролере применены резисторы С2-ЗЗН, ОМЛТ; конденсаторы - керамические, КМ-5, КМ-6, а оксидный - К50-35. Вместо К561ЛА7 подойдет микросхема КР1561ЛА7. Транзистор КТ315Г заменим любым кремниевым n-p-п транзистором, например, КТ501Г-КТ501Е.

Геркон - КЭМ-1; его обмотка содержит девять витков медного обмоточного провода ПЭВ-2 0,8. Если применен геркон меньших размеров, то число витков нужно уменьшить, ориентировочно в 1,5...2 раза.

Розетка разъема Х1 - РГН-1-3, а вставка - РШ2Н-1-17. При замене разъема на другой необходимо учитывать условия его работы - вибрацию и удары, повышенные влажность и температуру. Разъемы Х2 и ХЗ, рассчитанные на большой ток, использованы автомобильные; допустимо заменить их винтовыми зажимами.

Светодиод АЛ307М лучше заменить на более яркий L-53SRC-E фирмы Kingbright.

Конструктивно устройство собрано на монтажной плате с разводкой проводом МГТФ сечением 0,07 мм 2 и помещено в подходящую изоляционную коробку. Колодка разъема Х1 закреплена в торцевой ее части.

Для изготовления реле подбирают или склеивают из плотной бумаги трубку с таким расчетом, чтобы геркон легко в нее входил. Годятся жесткие трубки и из любого другого немагнитного материала - металла или пластмассы. На трубку наматывают обмотку так, чтобы осевая длина обмотки была несколько меньше длины баллона геркона, и промазывают эпоксидным клеем. Выводы укорачивают до 8...10 мм и облуживают для монтажа на плату.

Проводники, соединяющие обмотку реле с системой электрооборудования автомобиля, должны иметь сечение, не меньшее (а лучше, чуть большее), чем у проводов к лампам. Контролер следует размещать возможно ближе к контактам SF1 и надежно крепить. Светодиод монтируют на приборном щитке.

При налаживании контролера, подключенного к автомобилю, необходимую чувствительность реле подбирают перемещением геркона относительно обмотки. Геркон в оптимальном положении фиксируют в трубке каплями клея.

На рис. 2 представлена схема контролера для ламп ближнего и дальнего света . Здесь на триггере Шмитта DD1.1 собран генератор тактовых импульсов с периодом повторения около 0,5 с, на триггере DD1.2 - буфер-инвертор, на триггерах DD1.3, DD1.4 - электронные переключатели с временной задержкой, подобные тем, какие использованы в предыдущем устройстве, для каналов дальнего и ближнего света соответственно. Транзисторы VT1, VT2 служат усилителями тока, их нагрузка - двухцветный светодиод HL1. Датчики тока К1 и К2 - такие же герконовые реле. Генератор работает непрерывно, независимо от состояния герконов К1.1 и К2.1.

Поскольку оба канала одинаковы, рассмотрим работу только канала ближнего света. С генератора импульсов тактовая последовательность через инвертор DD1.2 поступает на верхний по схеме вход триггера DD1.4. Так как нижний вход триггера через обмотку реле К1, предохранители FU1, FU2 и лампы EL1, EL2 ближнего света (а также через резисторы R5, R8) соединен с корпусом, то на его выходе - высокий уровень. Транзистор VT2 и светодиод HL1 выключены.

При исправных лампах EL1, EL2 включение ближнего света приводит к появлению напряжения на разъеме Х2, в результате чего они включаются. От их пускового тока срабатывает реле К1, и через геркон К1.1 напряжение поступает на верхний вход триггера Шмитта DD1.4, однако триггер не изменяет своего состояния. После установления номинального тока через лампы геркон остается замкнутым.

Примерно через секунду напряжение на конденсаторе СЗ, увеличиваясь, достигает высокого уровня на входе триггера, он переключается в нулевое состояние. Транзистор VT2 открывается и включает "зеленый" светодиод сборки HL1.

При выключении ближнего света пропадает напряжение питания на разъеме Х2, лампы выключаются, реле размыкает геркон К1.1. Импульсы с генератора периодически переключают триггер DD1.4, что приводит к миганию светодиода зеленым светом. Через некоторое время конденсатор СЗ разрядится и триггер Шмитта DD1.3 снова заблокирует прохождение импульсов с генератора на базу транзистора VT2.

При перегорании хотя бы одной лампы (или ее предохранителя) включение ближнего света приведет к тому, что через секунду начнет мигать зеленый сигнал, указывая водителю на возникшую неисправность. Точно указать на причину отсутствия свечения лампы этот контролер не может.

Второй канал - дальнего света - работает аналогично, только индикатором служит "красный" светодиод сборки HL1.

Вместо КТ209Г в устройстве можно использовать любой транзистор из серии КТ503. Светодиод АЛС331А целесообразно заменить его аналогом повышенной яркости, например, L-59EGC фирмы Kingbright. С микросхемой КР1561ТЛ1, допускающей большее напряжение питания, контролер будет работать надежнее.

В реле К1 и К2 использованы те же герконы КЭМ-1. Обмотка реле К1 содержит 6 витков, а К2 имеет 2 витка, намотанных проводом ПЭВ-2 диаметром не менее 1,5 мм.

Монтажная плата устройства помещена в изоляционную коробку подходящих размеров, которая укреплена вблизи реле дальнего и ближнего света автомобиля. Реле К1 и К2 подключают к системе электрооборудования четырьмя гибкими изолированными проводами сечением не менее 2 мм 2 .

Эксплуатация описанных контролеров на автомобиле ВАЗ-2106 в течение нескольких лет показала их надежность и удобство в пользовании.

ЛИТЕРАТУРА
1. Чуйкин А. Стоп-сигнал под надежным контролем. ≈ За рулем, 1995, № 9, с. 80.
2. Банников В., Варюшин А. Контролер ламп стоп-сигнала. ≈ Радио, 1996, № 8, с. 52.
3. Алексеев С. Контроль исправности сигнальных ламп. ≈ Радио, 1997, № 5, с. 42, 43.

Схемы технологического контроля состоят из разомкнутых каналов, по которым информация о ходе технологического процесса поступает в пункт управления объектом.

С истемы технологического контроля имеют огромное число характеристик (либо состояний производственных устройств), о которых для обычного ведения технологического процесса оператору достаточна только двухпозиционная информация (параметр в норме — параметр вышел из нормы, механизм включен — механизм отключен и т. п.).

Контроль этих характеристик осуществлен при помощи схем сигнализации. В большинстве случаев в этих схемах более обширно используют электронные релейно-контактные элементы со световой и звуковой сигнализацией об отклонении характеристик.

Световая сигнализация осуществляется при помощи различной сигнальной арматуры. При всем этом световой сигнал может быть воспроизведен ровненьким либо мигающим светом, свечением ламп неполным каналом. Звуковая сигнализация производится, обычно, при помощи звонков, гудков и сирен. В неких случаях сигнализация о срабатывании защиты либо автоматики может быть выполнена при помощи особых сигнальных указательных реле-блинкеров.

Системы сигнализации разрабатывают непосредственно для данного объекта, потому всегда имеются их принципные схемы.

Принципные схемы сигнализации по предназначению могут быть разбиты на последующие группы:

1) схемы сигнализации положения (состояния) — для инфы о состоянии технологического оборудования («Открыто» — «Закрыто», «Включено» — «Отключено» и т. д.),

2) схемы технологической сигнализации, дающие информацию о состоянии таких технологических характеристик, как температура, давление, расход, уровень, концентрация и т. д.,

3) схемы командной сигнализации, дозволяющие передавать разные указания (приказы) из 1-го пт управления в другой при помощи световых либо звуковых сигналов.

По принципу деяния различают:

1) схемы сигнализации с личным съемом звукового сигнала, отличающиеся достаточной простотой и наличием для каждого сигнала личного ключа, кнопки либо другого коммутационного аппарата, позволяющего отключать звуковой сигнал.

Подобные схемы находят применение для сигнализации положения либо состояния отдельных агрегатов и не достаточно применимы для массовой технологической сигнализации, потому что в их сразу со звуковым сигналом обычно отключается и световой сигнал,

2) схемы с центральным (общим) съемом звукового сигнала без повторности деяния, снаряженные единым устройством, при помощи которого можно отключать звуковой сигнал, сохраняя личный световой сигнал. Недочетом схем без повторного деяния звукового сигнала является невозможность получения нового звукового сигнала до размыкания контактов электронных устройств, вызвавших возникновение первого сигнала,

3) схемы с центральным съемом звукового сигнала с повторностью деяния, прибыльно отличающиеся от прошлых схем способностью повторно подавать звуковой сигнал при срабатывании хоть какого датчика сигнализации независимо от состояния всех других датчиков.

По роду тока различают схемы на неизменном и переменном токе.

В практике разработки систем автоматизации технологических процессов находят применение разные схемы сигнализации, отличающиеся как по структуре, так и методам построения отдельных их узлов. Выбор более оптимального принципа построения схемы сигнализации определяется определенными критериями ее работы, также техническими требованиями, предъявляемыми к светосигнальной аппаратуре и датчикам сигнализации.

Схемы сигнализации положения

Эти схемы производятся для устройств, которые имеют два рабочих положения либо более. Показать и разобрать все встречающиеся на практике схемы сигнализации, также дать анализ надежности и эффективности каждой из-за их обилия не представляется вероятным. Потому дальше подвергнутся рассмотрению более соответствующие и нередко повторяющиеся в практике варианты схем.

Наибольшее распространение получили два варианта построения схем сигнализации положения (состояния) технологических устройств:

1) схемы сигнализации, совмещенные со схемами управления,

2) схемы сигнализации с независящим от схем управления питанием на группу технологических устройств 1-го либо различного предназначения.

Схемы сигнализации, совмещенные со схемами управления, обычно, делают в этом случае, когда щиты и пульты управления не имеют мнемосхем, а нужная площадь щитов и пультов позволяет применить сигнальную арматуру без ограничения ее размеров, допускающую прямое питание от цепей управления. Сигнализация положения (состояния) технологических устройств в таких схемах может осуществляться одним либо 2-мя световыми сигналами с горением ламп ровненьким светом.

Схемы, построенные с одной лампой, говорят, обычно, о включенном состоянии механизма и используются в критериях, когда ход технологического процесса и надежность допускают такую сигнализацию.

Необходимо подчеркнуть, что в таких схемах не предусматривается аппаратура, позволяющая в процессе использования временами инспектировать исправность ламп. Отсутствие такового контроля в случае перегорания лампы может привести к неверной инфы о состоянии механизма и нарушению обычного хода технологического процесса. Потому, если возникновение неверной инфы о состоянии технологического процесса не допускается, используют схемы с двухламповой сигнализацией.

Схемы сигнализации положения с внедрением 2-ух ламп используют также для таких устройств, как запорные органы (задвижки, заслонки, клапаны, шиберы и т. п.), потому что обеспечить надежную сигнализацию 2-ух рабочих положений («Открыто» — «Закрыто») таких устройств при помощи одной лампы фактически тяжело.

Рис. 1

Рис. 2 а — включение ламп через блок-контакты магнитных пускателей, б — приведение схемы к виду, комфортному для чтения, в — при несоответствии положения ключа управления положению управляемого механизма лампа мигает, г — при несоответствии ключа управления положению управляемого механизма лампа пылает неполным накалом, ЛО — сигнальная лампа «Механизм отключен», ЛВ, Л1 — Л4 — сигнальные лампы «Механизм включен», В, ОВ, ОО, О — положения ключа управления КУ (соответственно «Включено», «Операция включить», «Операция отключить», «Отключено»), ШМС- шина мигающего света, ШРС— шина ровненького света, ДС1, ДС2 — дополнительные резисторы, ПМ — блок-контакты магнитного пускателя, КПЛ — кнопка для проверки ламп, Д1— Д4 — разделяющие диоды

Подведем некие итоги. Схемы с независящим от схем управления питанием (см. рис. 2 ) используют в главном для сигнализации положения разных технологических устройств па мнемосхемах. В таких схемах в большей степени употребляют компактную сигнальную арматуру, рассчитанную на питание переменным либо неизменным током напряжением не выше 60 В.

Сигнал может воспроизводиться при помощи одной либо 2-ух ламп, пылающих ровненьким либо мигающим светом (см. рис. 2 , в) либо неполным накалом (см. рис. 2 , г). Такие световые сигналы обычно используют в схемах, в каких сигнализируется о несоответствии положения органа дистанционного управления механизмом, в этом случае ключа управления КУ, реальному положению механизма.

В схемах сигнализации положения с независящим от схем управления питанием, выполняемых при помощи одной лампы, обычно, предусматривается аппаратура для контроля исправности сигнальных ламп (см. рис. 2 ,а).

Схемы технологической сигнализации

Схемы технологической сигнализации созданы для оповещения обслуживающего персонала о нарушении обычного хода технологического процесса. Технологическая сигнализация воспроизводится ровненьким и мигающим светом и сопровождается, обычно, звуковым сигналом.

Сигнализация по предназначению может быть предупреждающей и аварийной. Такое разделение обеспечивает различную реакцию обслуживающего персонала на нрав сигнала, определяющего ту либо иную степень нарушения технологического процесса.

Наибольшее применение отыскали схемы технологической сигнализации с центральным съемом звукового сигнала. Они дают возможность принимать новый звуковой сигнал до размыкания контактов, вызвавших возникновение предшествующего сигнала. Внедрение различной релейной и сигнальной аппаратуры, различного напряжения и рода тока фактически не меняет принципа деяния схем.

Технологические процессы требуют позиционного контроля огромного числа характеристик, а соответствующей особенностью схем технологической сигнализации является наличие общих схемных узлов, в каких перерабатывается информация, поступающая от многих двухпозиционных технологических датчиков.

Информация из этих узлов выдается в форме звукового и светового сигналов только о тех параметрах, значения которых вышли из нормы либо нужны для управления технологическим процессом. Благодаря общим узлам понижаются потребность в аппаратуре и издержки на автоматизацию производства.

Зависимо от числа сигнализируемых характеристик световая сигнализация может быть выполнена ровненьким либо мигающим светом. При сигнализации многих характеристик (более 30) используются схемы с мерцанием поступившего сигнала. Если число характеристик наименее 30, используют схемы с ровненьким светом.

Метод работы схем технологической сигнализации почти всегда схож: при отклонении параметра от данного значения либо сверхдопустимого подаются звуковой и световой сигналы, звуковой сигнал снимают кнопкой съема звукового сигнала, световой сигнал исчезает при уменьшении отличия параметра от допустимого значения.

Рис. 3 . Схема технологической сигнализации с разделительными диодиками и мигающим светом: ЛКН — лампа контроля напряжения, Зв — звонок, РПС — реле предупреждающей сигнализации, РП1-РПn — промежные реле личных сигналов, включаемые контактами датчиков Д1 — Дn технологического контроля, ЛС1 — ЛСn — личные лампы, 1Д1-1Дn, 2Д1-2Дn — развязывающие диоды, КОС — кнопка опробования сигналов, КСС — кнопка съема сигналов, ШРС — шина ровненького света, ШМС — шина мигающего света

Рис. 4. Схема сигнализации с внедрением пульс-пары заместо источника мигающего света

Схемы технологической сигнализации с зависимым звуковым сигналом от светового используют только для предупреждающей сигнализации состояния неответственных технологических характеристик, потому что в этих схемах вероятна утрата сигнала, если сигнальная лампа неисправна.

Могут повстречаться схемы технологической сигнализации с личным съемом звукового сигнала. Схемы строят с внедрением для каждого сигнала самостоятельного ключа, кнопки либо другого коммутационного аппарата, отключающего звуковой сигнал, и используют для сигнализации состояния отдельных агрегатов. Сразу со звуковым сигналом отключается и световой.

Схемы командной сигнализации

Командная сигнализация обеспечивает одностороннюю либо двухстороннюю передачу разных сигналов-команд в критериях, когда внедрение других видов связи на техническом уровне нецелесообразно, а в отдельных случаях затруднено либо нереально. Схемы командной сигнализации ординарны и, обычно, не вызывают затруднений при их чтении.

Рис. 5. Пример принципной электронной схемы командной сигнализации (а) и диаграммы взаимодействия (б и в).

На рис. 5 , а приведена схема однобокой светозвуковой сигнализации для вызова наладочного персонала на рабочие места. Вызов осуществляется с рабочего места методом нажатия кнопок вызова (КВ1-КВЗ), которые на щите диспетчера включают световые (Л1—ЛЗ) и звуковой (Зв) сигналы. Диспетчер, установив по световому сигналу номер рабочего места, с которого поступил сигнал, методом нажатия кнопки съема сигнала КСС приводит схему в начальное состояние. Реле РП1-РПЗ и РС1-РСЗ промежные.

Школа для электрика

Общая схема электрооборудования автомобиля


Контрольные приборы, звуковой сигнал, электродвигатели, радиоприемник и другие приборы, не имеющие индивидуальной (встроенной) защиты, защищаются плавкими предохранителями.

Рис. 1. Принципиальная схема электрооборудования автомобиля ЗИЛ -130: 1 - реле-регулятор, 2 - генератор, 3 - амперметр, 4 - аккумуляторная батарея, 5 - реле стартера, 6 - стартер СТ130-А1, 7 - замок зажигания, 8 - сопротивление добавочное, 9- катушка зажигания, 10- коммутатор транзисторный, 11 - распределитель, 12 - свеча зажигания, 13 - блок биметаллических предохранителей, 14 - переключатель электродвигателя отопителя, 15 - сопротивление электродвигателя отопителя, 16 - электродвигатель отопителя, 17 - реле-прерыватель указателей поворота, 18 - фонарь контрольной лампы, 19 - фонарь контрольной лампы аварийного перегрева воды, 20 - датчик температуры, 21 - указатель уровня топлива, 22 - датчик указателя уровня топлива, 23 - указатель температуры воды, 24 - датчик указателя температуры воды, 25- фонарь контрольной лампы аварийного падения давления масла, 26--контакт манометра, 27- переключатель указателей поворота, 28 - выключатель сигнала торможения, 29, 30 - фонари задние, 31-подфарник, 32 - фара, 33 - переключатель света, 34 - фонарь подкапотный, 35 - выключатель плафона, 36 - плафон, 37 - переключатель света ножной, 38 - патрон контрольной лампы дальнего света фар, 39 - патроны ламп освещения приборов, 40 - предохранитель биметаллический, 41 - розетка штепсельная, 42-сигнал звуковой, 43 - кнопка звукового сигнала (входит в комплект рулевой колонки), 44 - розетка штепсельная, 45 - фонарь повторителя указателя поворота

Цепи зажигания и пуска не защищаются от коротких замыканий, чтобы не снижать их надежность в эксплуатации.

Тепловые предохранители подразделяют на предохранители многократного и однократного действия. При перегрузке или коротком замыкании в цепи контакт предохранителя многократного действия пульсирует, включая и выключая цепь. Контакты предохранителя однократного действия в этих случаях размыкаются. Включают предохранитель (замыкают контакты) нажатием кнопки.

Плавкие вставки предохранителей заменяют после устранения причин, вызвавших короткое замыкание. При замене плавкой вставки используют проволоку только соответствующего сечения. Например, при максимальном токе предохранителя 10 А медный луженый провод плавкой вставки должен иметь диаметр 0,26 мм (для 15 А соответственно 0,37 мм). Категорически запрещается применять более толстую проволоку («жучки») или заводские предохранители, рассчитанные на больший номинальный ток.

С целью предупреждения неисправностей электропроводки рекомендуется:
— периодически очищать провода, винтовые и штекерные клеммы от грязи и влаги;
— уделять особое внимание состоянию винтовых и штекерных соединений, не допуская их коррозии, окисления и ослабления соединений. Для предупреждения окисления контактных поверхностей соединений используется смазка литол и т. п.;
— регулярно проверять падение напряжения на участках цепей и контактных соединениях основных потребителей электроэнергии.

Большая часть неисправностей электрооборудования автомобилей возникает вследствие несвоевременного и некачественного технического обслуживания.

Основными неисправностями в бортовой сети являются:
— обрыв в цепи источников и потребителей электрической энергии;
— чрезмерное снижение напряжения в цепи источников и потребителей электрической энергии;
— короткое замыкание проводов и изолированных деталей и узлов приборов на корпус (массу) автомобиля.

Поиск причины неисправности целесообразно начинать с проверки рукой надежности крепления наконечников проводов на выводах электрических устройств, ибо значительная часть неисправностей в системе электрооборудования возникает при ослаблении крепления этих наконечников. При этом повышается сопротивление в цепи, увеличивается температура выводов, а при движении автомобиля вследствие вибрации даже нарушается контакт в цепи.

Обрыв в цепи источников и потребителей электрической энергии возникает вследствие расплавления плавкого предохранителя, размыкания контактов в термобиметаллическом предохранителе, разрыва проводов, непрочного крепления наконечников проводов на выводах, нарушения контакта в штекерном соединении проводов, нарушения контакта в выключателях и переключателях, обрыва цепи в потребителях (перегорание нити накаливания в лампе, перегорание дополнительного резистора или обмотки электродвигателя и т. п.).

В связи с широким применением электроники на автомобилях большое распространение получили плавкие предохранители, которые устанавливаются в отдельных колодках или блоках. При поиске неисправности в цепи удобно пользоваться схемами и таблицами с перечнем потребителей, защищенных пронумерованными предохранителями (таблицы приведены в заводских инструкциях по эксплуатации автомобиля). Для того чтобы убедиться в исправности предохранителя, необходимо включать поочередно потребители, защищенные этим предохранителем. Если хотя бы один потребитель работает, предохранитель исправен.

Если расплавилась вставка предохранителя, то перед заменой ее новой необходимо устранить неисправность, вызвавшую расплавление вставки. Если нет запасной вставки, можно к контактам вставки припаять медный провод диаметром 0,18 мм на силу тока 6 А, 0,23 мм - на 8 А; 0,26 мм - на 10 А, 0,34 мм - на 16 А, 0,36 мм - на 20 А.

Перед установкой новой вставки необходимо подогнуть клеммы держателя, что обеспечит надежный контакт в соединении вставки и держателя. На примере несложной схемы электрооборудования автомобиля ГАЗ -бЗА рассмотрим поиск обрыва проводов и других неисправностей бортовой сети (рис. 2). Например, не горят лампы фар.

Рис. 2. Схема электрооборудования автомобиля ГАЗ -63А: 1 -датчик контрольной лампы аварийного давления масла; 2- датчик указателя манометра давления масла в системе смазки; 3- прерыватель-распределитель; 4 - транзисторный коммутатор; 5 - датчик сигнализатора перегрева двигателя; 6 - датчик указателя температуры охлаждающей жидкости двигателя; 7 - дополнительные резисторы; 8- реле включения стартера; 9- прерыватель указателей поворота; 10 - контрольная лампа включения дальнего света фар; 11 - подкапотная лампа; 12 - переключатель электродвигателя стеклоочистителя; 13-переключатель указателей поворота; 14 - выключатель стоп-сигнала; 15 - ножной переключатель света; 16 - центральный переключатель света; 17-штепсельная розетка для переносной лампы; 18, 19 - термобиметаллические предохранители; 20-выключатель зажигания; 21 - электродвигатель отопителя; 22 - выключатель лампы плафона; 23 - датчик уровня топлива; 24 - лампы освещения контрольно-измерительных приборов; 25 - штепсельная розетка прицепа

Рассмотрим путь тока в цепи фар. Плюсовый вывод аккумуляторной батареи - клемма тягового реле стартера - амперметр - клемма «АМ» выключателя зажигания 20 - предохранитель 18-клемма «1» главного переключателя света 16 - клемма «4» переключателя 16 - клемма ножного переключателя света 15 - выводная клемма ножного переключателя (одна из двух в зависимости от положения переключателя) - клемма соединительной панели (колодки) - нить накаливания ламп фар - корпус автомобиля - минусовый вывод аккумуляторной батареи.

Для определения обрыва в этой цепи подключают один провод от контрольной лампы* или вольтметра на корпус автомобиля, а концом другого провода касаются поочередно клемм потребителей, приборов, переключателей и соединительных панелей, входящих в эту цепь, начиная от плюсового вывода аккумуляторной батареи, в последовательности рассмотренного пути тока. Перед подключением контрольной лампы на клемму «4» главного переключателя света нужно установить рукоятку переключателя в положение II. При подключении контрольной лампы к выводу ножного переключателя необходимо 2-3 раза нажать на его шток.

Когда контрольная лампа погаснет (или стрелка вольтметра отклонится к нулю), это укажет, что цепь имеет обрыв на участке от предыдущего места касания провода контрольной лампы (вольтметра) до этого места проверяемой цепи.

Обрыв провода можно определить и другим способом. Для этого нужно отсоединить концы проверяемого провода и подключить его последовательно с лампой (или вольтметром) к аккумуляторной батарее. При наличии обрыва контрольная лампа не будет гореть.

В случае необходимости проверяют исправность ламп, не вынимая их из фар. Для этого проводником соединяют плюсовый вывод аккумуляторной батареи с соответствующей клеммой соединительной панели, к которой подключены проводники от проверяемых ламп. Исправная лампа будет гореть.

При исправной лампе в фаре, она, как и контрольная, будет гореть с неполным накалом. Контрольная лампа горит с полным накалом в случае замыкания на корпус электрической цепи в фаре.

Внимание!

Категорически запрещается проверка исправности цепей потребителей электрической энергии автомобиля «на искру», т. е. замыканием провода на корпус, так как даже кратковременное короткое замыкание может вызвать повреждение полупроводниковых приборов электрооборудования, печатных плат монтажных блоков и т. п.

Недопустимое падение напряжения в цепях потребителей создается вследствие увеличения сопротивления в местах крепления наконечников проводов на клеммах источников и потребителей электрической энергии, приборов, соединительных панелей, а также в штекерном соединении проводников. Сопротивление возрастаетиз-заокисления контактирующих поверхностей деталей, а также нарушения прочности крепления наконечников проводов.

Например, при окислении выводов аккумуляторной батареи и наконечников стартерных проводов, на выводах батареи вследствие резкого увеличения сопротивления в цепи, даже при исправном состоянии стартера и батареи, значительно снижается сила тока в цепи, а поэтому уменьшается крутящий момент на шестерне привода стартера и частота вращения якоря. В результате не обеспечивается пусковая частота вращения коленчатого вала двигателя и он не пускается.

Другой пример. В случае нарушения контакта в соединении проводов на выводах, окисления или неплотного прилегания контактов в переключателях света лампы не горят или значительно снижают силу света. Аналогичные явления создаются и в других цепях бортовой сети автомобиля. Как правило, в местах ослабленного крепления проводов увеличивается нагрев, что служит признаком этой неисправности. Повышение температуры деталей ускоряет их окисление. Падение напряжения в вольтах в различных цепях потребителей электрической энергии определяют так. Сначала замеряют напряжение на выводах аккумуляторной батареи, затем, например, на клеммах соединительных панелей в цепи освещения и световой сигнализации. Разность напряжения на источнике и на клеммах соединительных панелей и будет величиной падения напряжения в исследуемой цепи.

Допустимое падение напряжения в электрической цепи фар, подфарников, указателей поворота, ламп световой сигнализации не должно быть более 0,9 В для 12-вольтной и 0,6 В-для 24-вольтной системы. На каждом клеплении наконечников проводов падение напряжения не должно превышать 0,1 В.

Замыкание проводников и деталей аппаратов и устройств электрооборудования на корпус автомобиля возникает из-за разрушения изоляции при механическом или тепловом повреждении ее. Так как проводники, соединяющие источники и потребители электрической энергии, обладают очень малым сопротивлением, то при замыкании их на корпус автомобиля по ним пойдет ток большой силы, вследствие чего предохранитель разомкнет цепь. Если она предохранителем не защищена, то происходит разрушение изоляции и плавление проводников и тепловое повреждение амперметра. При этом может возникнуть пожар.

Для определения замыкания провода на корпус автомобиля необходимо отсоединить концы проверяемого провода от выводов и присоединить один его конец последовательно с лампой или вольтметром к плюсовому выводу аккумуляторной батареи. При наличии замыкания на корпус лампа будет светиться (тускло или ярко в зависимости от степени замыкания), а стрелка вольтметра будет показывать напряжение на выводах аккумуляторной батареи.

Отказ в работе потребителей электрической энергии, подключенных к групповому термобиметаллическому предохранителю, чаще всего происходит из-за размыкания его контактов при замыкании этой цепи на корпус автомобиля. Для проверки следует нажать на кнопку этого предохранителя, и если его контакты разомкнутся вновь, то в цепи подключенных потребителей имеется замыкание на корпус автомобиля. В этом случае надо выключить потребители, нажать на кнопку включения предохранителя, а затем поочередно включать потребители. Исправные потребители будут работать. Если при включении какого-либо потребителя произойдет размыкание контактов предохранителя, то в цепи этого потребителя имеется замыкание на корпус.

На многих современных автомобилях в бортовой сети устанавливается монтажный блок, в котором смонтированы все предохранители и большая часть различных реле. На рис. 3 изображен монтажный блок 17.3722 автомобиля ВАЗ -2108, в котором установлены предохранители (Пр1 - Пр16) и реле (К1 -КН). Здесь же имеются резисторы R1 и R2, диоды Д1 и Д2 типа КД215А, диоды ДЗ, Д4 и Д5 типа КД105Б. На блоке имеется 11 штекерных колодок (Ш1-Ш11) для подсоединения пучков проводов.

Рис. 3. Монтажный блок предохранителей и реле 17.3722 автомобиля ВАЗ -2108:

Рис. 4. Схема внутренних соединений

Если в случае возникновения неисправности есть необходимость проверить соответствующую цепь в монтажном блоке, надо по общей схеме электрооборудования автомобиля или схеме питания неисправного потребителя найти номера входов и выходов этой цепи в монтажном блоке. По схеме монтажного блока (рис. 4) можно проследить коммутацию этой цепи внутри блока. Затем, пользуясь рис. 3, б, найти на блоке эти колодки и штекеры и с помощью контрольной лампы или омметра проверить цепь. Так как в некоторые цепи включены диоды, «+» источника тока, контрольной лампы или омметра подключается к входу, а «-» - к выходу цепи. Если в проверяемую цепь входят предохранитель или реле, то для проверки цепи необходимо сначала проверить предохранитель, а вместо реле установить перемычки: одну вместо контактов и другую вместо катушки.

Запись, например, Ш1-2 означает: штекерная колодка № 1, вывод № 2. Запись К1.15-К11 в столбце «Контакты…» означает, что нужно соединить между собой перемычкой штекеры «15» и «1» гнезда реле К1. Перемычки можно установить и вместо неисправного реле.

Например, нужно проверить цепь ламп стоп-сигнала на автомобиле ВАЗ -2108. Найдя на общей схеме электрооборудования выключатель стоп-сигнала, видим, что к нему подходят два провода: белый и красный (пурпурный). Первый из них входит в колодку Ш4, второй - в колодку Ш2.

Рис. 5. Проверка монтажного блока контрольной лампы и омметром

Там же или по отдельным монтажным схемам, приведенным обычно в руководствах по ремонту, видим, что белый провод подключается к выводу №10, а красный - к №3. По схеме коммутации монтажного блока, также имеющейся в руководствах по ремонту, находим, что с вывода Ш4-10 подается питание и он, в свою очередь, через предохранитель Прб связан с замкнутыми выводами Ш8-5, Ш8-6 и Ш8-7, два из которых служат для подвода питания от генератора (аккумулятора). Там же находим, что через вывод Ш2-3 и далее Ш9-14 ток подается к лампам в задних фонарях.

Если предохранитель исправен (обычно в этом надо убедиться сразу, пользуясь таблицей предохранителей, находящейся, например, в «Руководстве по эксплуатации автомобиля»), подключаем контрольную лампу (рис. 5) к выводам Ш4-10 и Ш8-7 (Ш8-5, Ш8-6). Аналогично проверяем цепь монтажного блока между выводами 1JJ2-3 и Ш9-14. Если в цепи имеется обрыв, нужно разобрать блок и спаять оборванный участок платы (можно подпаять параллельно ему проводник) или заменить печатные платы.

Другой пример: нужно проверить в монтажном блоке цепь ближнего света правой фары ВАЗ -2108. По таблице предохранителей находим, что нить ближнего света этой фары защищена предохранителем Пр 16. На рис. 4 видно, что этот предохранитель с одной стороны имеет выход на щ5-6 и Ш7-4 (пустой), а с другой стороны связан через контакты реле КН с питанием (выводы Ш8-7, Ш8--5, Щ8-6, как и в предыдущем примере). В свою очередь, катушка реле КП связана с выводом Ш4-12 (на подру-левой переключатель света) и массой блока - выводы ШЗ-5 и Ш10-5.

Для проверки этих цепей вместо реле ставим две перемычки: 30-87; 85-86. Затем подключаем омметр к выводам Ш8-7 (Ш8-5, Ш8-6) и Ш5-6. Сопротивление должно быть близким к нулю. Аналогично подключаем омметр к выводам Ш4-12 и ШЗ-5 (Ш10-5).

Очевидно, что применение в первом примере контрольной лампы, а во втором омметра равнозначно.

На автомобиле для проверки исправности реле, например, К11 его можно заменить аналогичным, например К5. Если после замены реле фары будут включаться, то блок исправен, а замененное реле неисправно. Вместо неисправного реле можно оставить перемычку, но следует учитывать, что в этом случае будут перегружены контакты переключателя фар, что вызовет их окисление. Детальная проверка различных реле описана в соответствующих разделах книги.

Источники и потребители электрической энергии в совокупности с проводами и элементами коммутации (выключателями и переключателями) составляют схему электрооборудования автомобиля. Для передачи электрической энергии от источника к потребителям используют провода, которые по изоляции разделяются на провода низкого и высокого напряжения. Для низкого напряжения применяются провода марки ПГВА (провод гибкий, виниловый автомобильный) или ПГВАЭ (экранированный).

Во вторичной цепи системы зажигания применяются специальные высоковольтные провода марки ПВВ (ГАЗ -66) или ПВС -7 (ЗИЛ -131, «Урал-375Д»).

На автомобилях применяют однопроводную систему электрооборудования, при которой второй провод заменяют металлические части самого автомобиля (масса автомобиля).

Однопроводная система уменьшает в два раза количество проводов, что значительно упрощает схему и снижает стоимость. Вместе с тем однопроводная система требует более качественной изоляции проводов и их крепления. При нарушении изоляции провода могут непосредственно касаться массы автомобиля, вызывая короткие замыкания.

При осмотре и техническом обслуживании автомобиля необходимо тщательно проверять состояние изоляции проводов и устранять причины, вызывающие повреждение проводов (перетирание об острые кромки, излишнее провисание, попадание на провода горючих и смазочных материалов). Особое внимание необходимо обращать при установке приборов электрооборудования на надежность соединения их корпусов с массой автомобиля. Это достигается зачисткой посадочных мест от грязи, коррозии и краски, а также надежным креплением проводов, соединяющих корпуса приборов между собой и с массой автомобиля.

Для удобства монтажа и защиты проводов от механических повреждений они соединены в пучки хлопчатобумажной оплеткой. Провода (пучки) крепятся с помощью скоб, расстояние между которыми должно быть 30-40 см.

Для обеспечения хорошего электрического контакта и упрощения монтажа схем в настоящее время широко используется штепсельное соединение проводов с клеммами приборов. Чтобы быстрее отыскать нужный провод в общем пучке проводов, наружная изоляция делается цветной. Это облегчает монтаж проводов, а также отыскание и устранение неисправностей в схемах электрооборудования-

На рис. 1 дана полная схема электрооборудования автомобиля ГАЗ -66. Знание схемы и путей тока необходимо для быстрого обнаружения и устранения неисправностей в электрооборудовании, возникающих в процессе эксплуатации автомобиля.

Изучение схемы облегчается, если иметь в виду некоторые общие положения, основными из которых являются следующие:
1. Необходимо прежде всего выделить цепи, соединяющие между собой аккумуляторную батарею, генератор, реле-регулятор, включатель зажигания, амперметр и центральный переключатель света. Все потребители тока подключаются к одному из перечисленных приборов.
2. Определить состав каждой цепи электрооборудования.
3. Найти приборы системы на схеме и на автомобиле и изучить порядок соединения приборов между собой.
4. Проследить путь тока в цепи и понять физический смысл его воздействия на тот или иной потребитель. При этом необходимо иметь в виду, что каждый потребитель (за исключением приборов системы электропуска) может питаться током как от аккумуляторной батареи, так и от генератора. При неработающем двигателе и работе его с малой частотой вращения коленчатого вала, когда напряжение генератора меньше напряжения аккумуляторной батареи, все потребители питаются от аккумуляторной батареи. При работе двигателя со средней и большой частотой вращения коленчатого вала все потребители, в том числе и аккумуляторная батарея, получают энергию от генератора.
5. Через амперметр проходит только разрядный и зарядный ток аккумуляторной батареи. Ток генератора, идущий на питание потребителей, через амперметр не проходит.
6. Цепь каждого потребителя начинается от клеммы « + » источника тока и заканчивается клеммой «-» этого же источ» ника.
7. Путь тока ко всем потребителям, кроме зарядной цепи, системы зажигания и системы электропуска проходит через предохранители.

Рассмотрим, например, путь тока в первичной цепи системы зажигания автомобиля ГАЗ -66 от аккумуляторной батареи и от генератора. Чтобы включить эту цепь, необходимо ключом зажигания замкнуть клеммы AM и КЗ включателя зажигания. В этом случае ток течет так: клемма « + » аккумуляторной батареи - зажим стартера - амперметр - включатель зажигания - добавочный резистор - клемма К транзисторного коммутатора - первичная обмотка катушки зажигания - безымянная клемма транзисторного коммутатора - транзисторный коммутатор - масса - выключатель батареи - клемма «-» аккумуляторной батареи.

Путь тока первичной цепи системы зажигания от генератора: клемма « + » генератора 12 - клемма « + » амперметра 45 - клемма AM включателя зажигания 46, а дальше остается тот же путь, что и при питании от аккумуляторной батареи, только с массы ток течет на клемму «-» генератора.

Рис. 1. Схема электрооборудования автомобиля ГАЗ -66:
1 - подфарник; 2 - фара; 3 - соединительная панель; 4 – кнопка звукового сигнала; 5 - звуковой сигнал; 6 - подкапотная лампа; 7—специальный фонарь; 8 - указатель уровня топлива; 9 - регулятор напряжения; 10 - указатель температуры охлаждающей жидкости; 11 - контрольная лампа температуры охлаждающей жидкости; 12 - генератор; 13 - включатель электродвигателя отопителя; 14 - электродвигатель отопителя; 15 - датчик контрольной лампы температуры охлаждающей жидкости в радиаторе: 16 - датчик температуры охлаждающей жидкости двигателя; 17 - транзисторный коммутатор; 18 - гасящее сопротивление; 19 - свеча зажигания; 20 - катушка зажигания; 21 - распределитель; 22 - датчик уровня топлива правого топливного бака; 23 - выключатель звукового сигнала; 24 - включатель плафона кузова; 25 - плафон кузова; 26 - кнопочный предохранитель подогревателя; 27 - контрольная спираль; 28 - включатель свечи; 29 - электровентилятор подогревателя; 30 - свечи накаливания; 31 - добавочный резистор; 32 - переключатель датчиков топливных баков; 33 - дополнительное реле стартера; 34 - плафон кабины; 35 -выключатель плафона; 36 - выключатель поворотной фары; 37 - лампа освещения щитка приборов; 38 - указатель давления масла; 39 контрольная лампа аварийного давления масла; 40-контрольная лампа указателя поворота; 41, 44 - датчики давления масла; 42 - переключатель электродвигателя стеклоочистителя; 43 - поворотная фара; 45 - амперметр; 46 - включатель зажигания; 47 - кнопочный предохранитель; 48 - элекгродвигател ь стеклоочистителя: 49 - штепсельная розетка; 50 - прерыватель, 51 - переключатель указателей поворота; 52 - включатель света стоп-сигнала; 53 - контрольная лампа дальнего света фар; 54 - центральный переключатель света; 55 - стартер; 56 - переключатель электромагнитного клапана; 57 - электромагнитный клапан; 58 - выключатель батареи; 59 - аккумуляторная батарея; 60 - соединитель проводов; 61 - штепсельная розетка прицепа; 62 - задний фонарь; 63 - датчик уровня топлива левого топливного бака; 64 - разъемные соединения; 6!5 - реле звуковой сигнализации; 66 - ножной переключатель света, условное обозначение цветов: Б - белый; К - красный; Ж -желтый; 3 - зеленый; КОР - коричневый; А - черный; Г - голубой; О - оранжевый; Р -розовый; Ф - фиолетовый; С - серый

К характерным причинам, вызывающим перебои и отказы в работе систем и цепей электрооборудования, можно отнести:
— ослабление контакта в соединениях цепей;
— окисление контактов и контактных соединений;
— повреждение изоляции и замыкание на массу проводов и токонесущих элементов приборов электрооборудования;
— отсутствие надежного соединения корпусов приборов с массой автомобиля; обрывы цепей.

Обнаружение места обрыва или замыкания на массу удобно производить с помощью контрольной лампы (А12-1 или А12-3) путем последовательной проверки всех участков цепи. На характер неисправности в цепи (обрыв или замыкание) указывает стрелка амперметра при подключении данной цепи к аккумуляторной батарее.

Полная схема электрооборудования автомобиля дается в каждой инструкции (руководстве) по эксплуатации данного автомобиля. Это облегчает отыскание неисправности в случае ее появления.

К атегория: - 1Отечественные автомобили

Всем владельцам китайских скутеров посвящается…

Для начала хотелось бы представить схему электропроводки китайского скутера.

Поскольку все китайские скутеры весьма похожи как сиамские близнецы, то и электрическая схема у них практически ничем не отличается.

Схем найдена в интернете и является, на мой взгляд, одной из самых удачных, так как на ней показан цвет соединительных проводников. Это значительно упрощает схему и делает её чтение более комфортным.

(Кликните по картинке для увеличения. Изображение откроется в новом окне).

Стоит отметить, что в электрической схеме скутера, так же как и в любой электронной схеме, есть общий провод . У скутера общим проводом является минус (- ). На схеме общий провод показан зелёным цветом. Если посмотреть повнимательнее, то можно заметить, что он соединён со всем электрооборудованием скутера: фарой (16 ), реле поворотов (24 ), лампой подсветки приборной панели (15 ), индикаторными лампами (20 , 36 , 22 , 17 ), тахометром (18 ), датчиком уровня топлива (14 ), звуковым сигналом (31 ), задним габаритом/стоп-сигналом (13 ), пусковым реле (10 ) и другими приборами.

Для начала давайте пробежимся по основным элементам схемы китайского скутера.

Замок зажигания.

Замок зажигания (12 ) или «Главный выключатель». Замок зажигания представляет собой не что иное, как обычный многопозиционный переключатель. Несмотря на то, что у замка зажигания 3 положения, в электрической схеме используется всего 2.

При первом положении ключа замыкается красный и чёрный провод. При этом напряжение от аккумулятора поступает в электроцепь скутера, скутер готов к запуску. Также готовы к работе индикатор уровня топлива, тахометр, звуковой сигнал, реле-поворотов, схема зажигания. На них подаётся напряжение питания от аккумулятора.

В случае неисправности замка зажигания его можно смело заменить каким-нибудь переключателем вроде тумблера. Тумблер должен быть достаточно мощный, ведь через замок зажигания, по сути, коммутируется вся электроцепь скутера. Конечно, можно обойтись и без тумблера, если ограничиться замыканием красного и чёрного провода, как это когда-то делали герои голливудских боевиков .

В двух остальных положениях происходит замыкание чёрно-белого провода от модуля зажигания CDI (1 ) на корпус (общий провод). При этом работа двигателя блокируется . В некоторых моделях скутеров для блокировки двигателя предусмотрена кнопка стоп-двигатель (27 ), которая также, как и замок зажигания соединяет бело-чёрный и зелёный (общий, корпусной) провод.

Генератор.

Генератор (4 ) вырабатывает переменный электрический ток для питания всех потребителей тока и зарядки аккумуляторной батареи (6 ).

От генератора отходит 5 проводов. Один из них подключен к общему проводу (раме). С белого провода снимается переменное напряжение и подаётся на реле-регулятор для последующего выпрямления и стабилизации. С жёлтого провода снимается напряжение, которое используется для питания лампы ближнего/дальнего света, которая установлена в переднем обтекателе скутера.

Также в конструкции генератора присутствует так называемый датчик холла . Электрически он не связан с генератором и от него идут 2 провода: бело-зелёный и красно -чёрный . Датчик холла подключен к модулю зажигания CDI (1 ).

Реле-регулятор.

Реле-регулятор (5 ). В народе может обзываться «стабилизатором», «транзистором», «регулятором», «регулятором напряжения» или попросту «реле». Все эти определения относятся к одной «железяке». Вот так выглядит реле-регулятор.

Реле-регулятор у китайских скутеров устанавливается в передней части под пластмассовым обтекателем. Само реле-регулятор крепится к металлическому основанию скутера для того, чтобы уменьшить нагрев радиатора реле при работе. Вот так выглядит реле-регулятор на скутере.

В работе скутера реле-регулятор играет весьма важную роль. Задача реле-регулятора заключается в том, чтобы переменное напряжение от генератора превратить в постоянное и ограничить его на уровне 13,5 - 14,8 вольт. Именно такое напряжение требуется для зарядки аккумулятора.

На схеме и на фото видно, что от реле-регулятора отходит 4 провода. Зелёный - это общий провод. О нём мы уже говорили. Красный - это выход плюсового постоянного напряжения 13,5 -14,8 вольт.

По белому проводу на реле регулятор поступает переменное напряжение от генератора. Также к регулятору подключен жёлтый провод, идущий от генератора. По нему на регулятор подаётся переменное напряжение от генератора. За счёт электронной схемы регулятора, напряжение на этом проводе преобразуется в пульсирующее, и подаётся на мощные потребитель тока - лампу ближнего и дальнего света, а также лампы подсветки приборной панели (их может быть несколько).

Напряжение питания ламп не стабилизируется, но ограничивается реле-регулятором на определённом уровне (около 12V), так как на больших оборотах переменное напряжение, поступающее от генератора, превышает допустимое. Думаю, об этом знают те, у кого выгорали габариты при неисправностях реле-регулятора.

Несмотря на всю свою важность, устройство реле-регулятора достаточно примитивно. Если расковырять компаунд, которым залита печатная плата, то можно обнаружить, что основной реле является электронная схема из тиристора BT151-650R , диодного моста на диодах 1N4007 , мощного диода 1N5408 , а также нескольких элементов обвязки: электролитических конденсаторов, маломощных SMD-транзисторов, резисторов и стабилитрона.

Из-за своей примитивной схемотехники реле-регулятор частенько выходит из строя. О том, как проверить регулятор напряжения читайте .

Элементы цепи зажигания.

Одной из самых важных электрических цепей скутера является схема зажигания. В неё входят модуль зажигания CDI (1 ), катушка зажигания (2 ), свеча зажигания (3 ).

1 ) выполняется в виде небольшой коробочки залитой компаундом. Это усложняет разборку блока CDI в случае его неисправности. Хотя модульная конструкция этого блока упрощает процесс его замены.

К модулю CDI подключается 5 проводников. Сам модуль CDI располагается в донной части корпуса скутера недалеко от аккумуляторного отсека и закрепляется на раме резиновым фиксатором. Доступ к блоку CDI затрудняется тем, что он расположен в донной части и закрыт декоративным пластиком, который приходится полностью снимать.

2 ). Сама катушка зажигания располагается с правой стороны скутера и закреплена на раме. Представляет собой некий пластиковый бочонок с двумя разъёмами для подключения и выводом высоковольтного провода, который уходит к свече зажигания.

Конструктивно катушка зажигания расположена рядом с пусковым реле. Для защиты от пыли, грязи и случайных замыканий катушка закрывается резиновым чехлом.

С помощью высоковольтного провода катушка зажигания соединяется со свечой зажигания A7TC (3 ).

На скутере свеча зажигания оказалась хитроумно запрятана, и с первого раза её можно искать довольно долго. Но если "пойти" вдоль высоковольтного провода от катушки зажигания, то провод приведёт нас прямиком к колпачку свечи зажигания.

Колпачок снимается со свечи небольшим усилием на себя. Он фиксируется на контакте свечи упругой металлической защёлкой.

Стоит отметить, что высоковольтный провод подсоединяется к колпачку без пайки. Многожильный провод в изоляции просто накручивается на контакт-шуруп встроенный в колпачок. Поэтому сильно дёргать за провод не стоит, иначе можно выдернуть провод из колпачка. Устраняется это легко, но провод придётся укоротить на 0,5 - 1 см.

До самой свечи зажигания добраться не так-то просто. Для её демонтажа необходим торцовый ключ. С его помощью свеча просто вывёртывается из посадочного места.

Стартёр.

Стартер (8 ). Стартер служит для запуска двигателя. Расположен он в средней части скутера рядом с двигателем. Добраться до него нелегко.

Запуском стартера управляет пусковое реле (10 ).

Пусковое реле размещено с правой стороны на раме скутера. На пусковое реле приходит толстый красный провод от плюсовой клеммы аккумулятора. Так запитывается пусковое реле.

Датчик и индикатор топлива.

14 ) встроен в топливный бак.

От датчика отходят три провода. Зелёный является общим (минус питания), а двумя другими датчик подключается к индикатору уровня топлива (11 ), который установлен на приборной панели скутера.

Датчик топлива (14 ) и индикатор (11 ) являются одним устройством и запитываются постоянным стабилизированным напряжением. Так как два этих устройства разнесены между собой, то они соединяются трёхконтактным разъёмом. Плюсовое напряжение питания поступает на индикатор топлива и датчик по чёрному проводу с замка зажигания.

Если разомкнуть трёхконтактный разъём, идущий от датчика топлива, то индикатор топлива перестанет показывать уровень топлива в баке. Поэтому, если у вас не работает индикатор топлива, то проверьте соединительный разъём между датчиком и индикатором топлива, а также убедитесь, что на них подаётся напряжение питания.

Также стоит помнить, что напряжение питания на датчик и индикатор подаётся при замкнутом положении замка зажигания (12 ). По схеме - это правое положение.

Реле поворотов.

Реле поворотов или реле-прерыватель (24 ). Служит для управления передними и задними лампами указания поворота.

Как правило, реле поворотов устанавливается рядом с приборами (спидометром, тахометром, индикатором уровня топлива) на приборной панели. Для того чтобы его увидеть надо снять декоративный пластик. На вид выглядит как небольшой пластмассовый бочонок с тремя выводами. При включённых поворотниках издаёт характерные щелчки частотой около 1 Гц.

После реле поворотов устанавливается переключатель указателей поворота (23 ). Это обычный клавишный переключатель, который коммутирует плюсовое напряжение от реле-поворотов (серый провод) на лампы. Если взглянуть на схему, то при правом положении переключателя (23 ) мы подаём напряжение по синему проводу на правую переднюю (21 ) и правую заднюю (32 ) лампу указатель. Если переключатель в левом положении, то серый провод замыкается на оранжевый, и мы подаём питание на левую переднюю (19 ) и левую заднюю (33 ) лампу указатель. Кроме того, параллельно соответствующим лампам-указателям (19 , 20 , 32 , 33 ) подключены сигнальные лампы (20 и 22 ), которые размещены на приборной панели скутера и служит чисто информационным сигналом для водителя скутера.

Звуковой сигнал.

Звуковой сигнал (31 ) скутера размещён под пластиковым обтекателем скутера рядом с реле-регулятором.

Напряжение питания звукового сигнала - постоянное. Оно поступает от реле-регулятора или аккумулятора (если двигатель выключен) через замок зажигания и кнопку включения звукового сигнала (25 ).

Лампа ближнего/дальнего света (16 ). Да, та самая, что освещает нам дорогу в тёмное время суток.

Сама лампа является двойной с двумя нитями накала и тремя контактами для подключения в электроцепь. Один из контактов, понятно, общий. Мощность лампы 25W, напряжение питания 12V. Горит безбожно при неисправном реле-регуляторе из-за того, что оно не ограничивает амплитуду напряжения на уровне 12 вольт, что приводит к тому, что на лампу подаётся напряжение 16 - 27 вольт, а то и больше. Всё зависит от оборотов.

Поэтому, если на холостом ходу лампа светит очень ярко, а не в полнакала, то лучше выключите её и проверьте реле-регулятор. Если оставите всё как есть, то лампа ближнего/дальнего света сгорит, что печально. Стоимость её приличная.

На фото рядом лампа указателя поворота (красная). Мощность лампы 5W на напряжение питания 12V.