Полное сопротивление петли фаза нуль кабелей. Как измерить сопротивление петли фаза-ноль? Как замеряется сопротивление петли фаза ноль

Контур, состоящий из фазы трансформатора и цепи фазного и нулевого проводников. Сопротивление петли фаза-ноль определяет ток такого короткого замыкания.

Если сопротивление петли фаза-ноль велико, то может оказаться, что ток короткого замыкания не достаточен для быстрого срабатывания защиты от короткого замыкания. И защита или вообще не отключает короткое замыкание, или отключает через длительное время. Все это время на корпусе электроаппарата присутствует опасное напряжение.

В электроустановках до 1000 В с заземлением нейтрали безопасность обслуживания электрооборудования при пробое на корпус обеспечивается отключением поврежденного участка с минимальным временем. При замыкании фазного провода на соединенный с нейтралью трансформатора (или генератора) нулевой провод или корпус оборудования образуется контур, состоящий из фазы трансформатора и цепи фазного и нулевого проводников. Этот контур принято называть петлей «фаза-ноль»

Проверка надежности и быстроты отключения поврежденного участка сети состоит в следующем:

Определяется ток короткого замыкания на корпус Iкз. Этот ток сопоставляется с расчетным током срабатывания защиты испытуемого участка сети. Если возможный в данном участке сети ток аварийного режима превышает ток срабатывания защиты с достаточной кратностью, надежность отключения считается обеспеченной.

Рис.5

R т, Х т - активное и индуктивное сопротивление вторичной обмотки силового трансформатора

R к - переходное сопротивление контактного соединения

R а - сопротивление аппаратов защиты и коммутации

R тт, Х тт - активное и индуктивное сопротивление вторичной обмотки трансформатора тока

R пр, Х тпр - активное и индуктивное сопротивление провода (длину провода в обоих случаях принимаем 80м.)

Z - электроприемник-потребитель.

Индуктивное и активное сопротивление обмотки трансформатора (мОм)

Сопротивления контактов определяются по следующей формуле

Полное сопротивление петли фаза-ноль

Поученный расчетный ток к.з. сравниваем с током срабатывания защитной аппаратуры. Если выполняется условие, то аппарат защиты сработает и его выбор произведен верно

Произведем расчет сопротивления петли фаза-ноль

В качестве трансформатора принимаем следующий

U НН =0,4 кВ

Р к =7,6 кВ

Определяем сначала индуктивное и активное сопротивление обмотки трансформатора (мОм) по формулам (6.1) и (6.2)

Электроснабжение

Проверка условий срабатывания защитного аппарата при однофазном замыкании в сетях напряжением до 1000В с глухим заземлением нейтрали

В электрических сетях напряжением до 1000 в с глухим заземлением нейтрали должно быть обеспечено надежное отключение защитным аппаратом однофазного к. з. Это диктуется требованиями техники безопасности.
Расчетными точками для определения величины тока к. з. являются наиболее удаленные (в электрическом смысле) точки сети, так как именно этим точкам соответствует наименьшее значение тока однофазного к. з.
Величина однофазного тока к. з. может быть определена по приближенной формуле

где U ф - фазное напряжение сети, в;
Z
т - полное сопротивление понижающего трансформатора току замыкания на корпус, ом;
Z
п - полное сопротивление петли фаза - нуль линии до наиболее удаленной точки сети, ом.
Расчетные значения полных сопротивлений понижающих трансформаторов при однофазных замыканиях приведены в табл. 7-1.
Для трансформаторов мощностью более 630 ква при определении тока к. з. можно принять:
Z
т =0
Полное сопротивление петли проводов или жил кабеля линии определяется по формуле

где R п - активное сопротивление фазного ( R ф ) и нулевого (Ro) проводов, ом;
R
п =R ф +R о (7-3 )
Х п - индуктивное сопротивление петли проводов или жил кабеля, ом.

Активные сопротивления проводов из цветных металлов определяются по табл. 5-1 . Средние значения индуктивных сопротивлений петель проводов или жил кабелей из цветных металлов на 1 км линии даны в табл. 7-2.
Для стальных проводов индуктивное сопротивление петли проводов определяется по формуле

где Х" п - внешнее индуктивное сопротивление петли из прямого и обратного проводов, равное для воздушной линии напряжением до 1000в 0,6 ом/км; Х" п.п и Х" п.о - внутренние индуктивные сопротивления соответственно прямого и обратного проводов линии, ом/км.
Значения полных сопротивлений петель для проводов и жил кабелей из цветных металлов на 1 км линии даны в табл. 7-3. В табл. 7-6 указаны сопротивления петли "фаза трехжильного кабеля - стальная полоса" для небронированных кабелей.

Таблица 7-1 Расчетные сопротивления трансформаторов при однофазном к. з. на стороне 400/230 в

Тип

Номинальная мощность, ква

Напряжение
обмотки ВН. кв

Схема соединений

Полное сопротивление Zт, ом

ГОСТ401-41

ТМ, ТМА
ТМ
ТМ
ТМ
ТМА
ТСМА
ТСМ
ТМ, ТМА
ТМ, ТМА
ТМ. ТМА
ТМ, ТМА
ТМ, ТМА
ТМ, ТМА
ТМ, ТМА
ТМ, ТМА
ТМ

20
30
50
100
100
100
100
180
180
320
320
560
560
750
1000
1000

6-10
6-10
6-10
6-10
35
6-10
35
6-10
35
6-10
35
6-10
35
6-10
6-10
35

У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун

1,39
0,9
0,54
0,27
0,25
0,26
0,25
0,15
0,14
0,085
0,08
0,048
0,046
0,036
0,027
0,026

ГОСТ12022-66

ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ
ТМ

25
40
63
63
100
100
160
160
250
250
400
400
400
630

6-10
6-10
6-10
20
6-10
20-35
6-10
20-35
6-10
20-35
6-10
20-35
6-10
6-10

У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
У/Ун
Д/Ун
У/Ун

1,04
0,65
0,413
0,38
0,26
0,253
0,162
0,159
0,104
0,102
0,065
0,064
0,022
0,043

ГОСТ11920-66

ТМ
ТМ
ТМ
ТМ

1 000
1 000
1 000
1 000

6-10
20-35
6-10
20-35

У/Ун
У/Ун
Д/Ун
Д/Ун

0,027
0,026
0,009
0,01

ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ
ТСЗ

160
180
250
320
400
560
630
750
1 000
1 000

6-10
6-10
6-10
6-10
6-10
6-10
6-10
6-10
6-10
6-10

Д/Ун
У/Ун
Д/Ун
У/Ун
Д/Ун
У/Ун
Д/Ун
У/Ун
Д/Ун
У/Ун

0,055
0,15
0,035
0,085
0,022
0,048
0,014
0,036
0,009
0,027

Примечания: Для понижающих трансформаторов с напряжением вторичных обмоток 230/133в значения сопротивлений в 3 раза меньше указанных в табл. 7-1.
Условные обозначения схем соединений трансформаторов:
У - звезда; Ун - звезда с выведенной нулевой точкой; Д - треугольник.

Таблица 7-2 Средние значения индуктивных сопротивлений петли прямого и обратного проводов или жил кабеля, выполненного из цветных металлов ом/км

Таблица 7-3 Полные сопротивления петли прямого и обратного провода линии или жил кабеля, ом/км

Сечение провода, мм.кв

Кабель и провода в трубах

Провода на роликах и изоляторах

Провода воздушных линий

прямого

обратного

медные

алюминиевые

медные

алюминиевые

медные

алюминиевые

1
1,5
1,5
2,5
2,5
4
4
4
6
6
6
10
10
10
16
16
16
25

25
25
35
35
35
50

50
50
70
70
70
95

95
95
120
120
120
150

150
150

1
1
1,5
1,5
2,5
1,5
2,5
4
2,5
4
6
4
6
10
6
10
16
10
16
25
10
16
35
16
25
50
25
35
70
35

50
95
50
70
120
50

70
150

37,8
31,5
25,2
20,2
15,1
17,3
12,2
9,3
10,6
7,71
6,12
6,50
4,90
3,68
4,26
3,04
2,40
2,58

1,94
1,49
2,38
1,74
1,09
1,60

1,14
0,793
1,03
0,833
0,58
0,755

0,608
0,428
0,568
0,461
0,350
0,535

0,430
0,285

-
-
-
-
25,2
-
20,5
15,8
17,9
13,2
10,5
11,1

8,42
6,32
7,24
5,14
3,96
4,44

3,26
2,56
4,08
2,90
1,84
2,62

1,92
1,29
1,74
1,39
0,932
1,27
0,99
0,797
0,922
0,745
0,561
0,862
0,687
0,446

-
-
25,2
20,2
15,1
17,3
12,2
9,3
10,6
7,71
6,14
6,52
4,92
3,71
4,28
3,08
2,45
2,62

1,98
1,55
2,42
1,79
1,16
1,65

1,21
0,890
1,11
0,927
0,706
856
0,712
0,566
-
-
-
-
-
-

-
-
-
-
25,2
-
20,5
15,8
17,9
13,2
10,5
11,1

8,42
6,32
7,24
5,15
3,99
4,46

3,30
2,60
4,11
2,96
1,90
2,66

1,97
1,36
1,80
1,45
1,03
1,34

1,08
0,815
-
-
-
-
-
-

-
-
-
-
-
-
-
9,3
-
-
6,16
-
4,96
3,75
4,32
3,13
2,52
2,69
2,08
1,68
2,48
1,87
1,29
1,74
1,32
1,05
1,24
1,08
0,896
1,02
0,915
0,772
0,858
0,792
0,732
-
-
-

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
4,03
4,50
3,34
2,66
4,15
3,00
1,96
2,70

2,03
1,44
1,86
1,53
1,13
1,42

1,18
0,907
1,09
0,945
0,808
1,04
0,808
0,732

Таблица 7-6 Полные сопротивления петли "фаза трех жильного кабеля - стальная полоса", ом/км

Сечение кабеля, мм.кв

Ток и материал жил кабеля

Размеры стальной полосы, мм

20X4

40X4

50X4

50X4

60X4

80X4

100X4,
100X6

100X5,
100X8

Ток срабатывания максимального расцепителя автомата, а

1400

1400

1400

1400

1400

1400

Номинальный ток
плавкой вставки безынарционного предохранителя, а

Материал жил кабеля:

Полное сопротивление петли, ом / км

Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
Медь
Алюминий
Медь
Алюмниий
Медь
Алюминий
Медь
Алюминий
Медь
Алюминий

9,59
13,52
7,76
10,34
6,36
7,86
5,6
6,49
5,14
5,70
4,91
5,30
4,75
5,02
4,64
4,83
4,57
4,70
4,51
4,62
4,47
4,56
4,44
4,52

8,42
12,35
6,59
9,17
5,19
6,69
4,43
5,32
3,97
4,53
3,74
4,13
3,58
3,85
3,47
3,66
3,40
3,53
3,34
3,45
3,30
3,39
3,27
3,35

7,82
11,79
5,97
8,59
4,55
6,07
3,78
4,68
3,31
3,88
3,09
3,48
2,92
3,19
2,81
3,0
2,73
2,87
2,69
2,8
2,65
2,74
2,63
2,7

7,45
11,42
6,60
8,22
4,18
5,7
3,41
4,31
2,94
3,51
2,71
3,11
2,55
2,72
2,44
2,63
2,36
2,50
2,32
2,43
2,28
2,37
2,26
2,33

7,40
11,37
5,54
8,17
4,11
5,63
3,32
4,24
2,86
3,43
2,64
3,03
2,47
2,74
2,37
2,55
2,29
2,42
2,24
2,35
2,21
2,29
2,18
2,25

7,17
11,14
5,31
7,94
3,98
5,4
3,09
3,01
2,63
3,2
2,4
2,8
2,24
2,5
2,4
2,32
2,06
2,19
2,01
2,12
1,98
2,06
1,95
2,02

7,14
11,13
5,27
7,92
3,83
5,37
3,04
3,96
2,57
3,15
2,35
2,74
2,19
2,45
2,08
2,26
2,01
2,14
1,96
2,07
1,93
2,01
1,90
1,96

6,92
10,91
5,05
7,7
3,61
5,15
2,82
3,74
2,35
2,93
2,13
2,52
1,97
2,23
1,86
2,04
1,79
1,92
1,74
1,85
1,71
1,79
1,68
1,74

6,82
10,81
4,95
7,61
3,5
5,05
2,71
3,64
2,24
2,82
2,01
2,41
1,86
2,12
1,75
1,93
1,67
1,8
1,63
1,74
1,60
1,65
1,58
1,64

6,59
10,58
4,72
7,38
3,27
4,82
2,48
3,41
2,01
2,59
1,78
2,18
1,63
1,89
1,52
1,7
1,44
1,57
1,4
1,51
1,37
1,47
1,35
1,41

6,56
10,56
4.68
7,34
3,22
4,77
2,42
3,36
1,95
2,53
1,73
2,12
1,57
1,83
1,46
1,64
1,38
1,51
1,35
1,45
1,31
1,39
1,28
1,35

6,45
10,45
4,57
7,23
3,1
4,66
2,31
3,25
1,84
2,42
1,62
2,01
1,46
1,72
1,35
1,53
1,27
1,40
1,24
1,34
1,2
1,28
1,17
1,24 I 3 ;
I
к -наименьшая величина однофазного тока к. з., определяемая по формуле (7-1),а.
Допустимая кратность минимального тока к. з. должна быть не менее 3 по отношению к номинальному току плавкой вставки предохранителя и номинальному току расцепителя автоматического выключателя, имеющего обратно зависимую от тока характеристику, и не менее 1,1 К р по отношению к току срабатывания автоматического выключателя, имеющего только электромагнитный расцепитель (К р - коэффициент, учитывающий разброс характеристик расцепителя по данным завода).
Для сетей, прокладываемых во взрывоопасных помещениях, допустимые кратности тока к. з. увеличиваются до значения 4 по отношению к номинальному току плавкой вставки предохранителя и 6 по отношению к номинальному току расрасцепителя автоматического выключателя с обратно зависимой от тока характеристикой.
Для сетей, защищаемых только от токов к. з., в необходимых случаях (например, для отстройки от токов самозапуска двигателей) допускается завышение токов плавких вставок предохранителей и уставок расцепителей автоматов, но при этом кратность тока к. з. должна иметь значение не менее 5 по отношению к номинальному току плавкой вставки предохранителя и не менее 1,5 по отношению к току срабатывания электромагнитного расцепителя автомата.
Значения допустимой кратности тока к. з. для различных условий прокладки сети приведены в табл. 7-8.

Таблица 7-8 Значения допустимой минимальной кратности тока к. з. по отношению к току защитного аппарата

Условия прокладки

Допустимая кратность тока к. з. по отношению

к номинальному току плавкой вставки предохранителя

к току уставки срабатывания автоматического выключателя, имеющего только электромагнитный
расцепитель (отсечку)

к номинальному току расцепителя
автоматического выключателя с обратно зависимой от тока характеристикой

Сеть проложена в невзрывоопасном помещении при условии выполнения требований табл. 4-50
Сеть проложена в не взрывоопасном помещении при условии, что требования табл. 4-50 не выполняются
Сеть проложена во взрывоопасном помещении

3

1,1Кр


1,5

1,1Кр

3

Примечания: К р - коэффициент, учитывающий разброс характеристик автоматических выключателей с электромагнитным расцепителем. При отсутствии данных завода о гарантируемой точности уставки тока срабатывания автоматического выключателя с электромагнитным расцепителем (отсечка) допускается принимать значение коэффициента К р для автоматических выключателей на номинальный ток до 100 а равным 1,4, выше 100 а - равным 1,25. При затруднении в выполнении требований, указанных в табл. 7-8, допускается применение быстродействующей защиты от замыкания на землю.

Пример 7-1.

На рис. 7-1 представлена схема четырехпроводной воздушной линии, выполненной алюминиевыми проводами и получающей питание от шин распределительного щита 380/220 в. Нейтраль системы глухо заземлена. Сечения проводов и длины участков линии указаны на рис. 7-1.
Пренебрегая сопротивлением внешней сети до шин щита и сопротивлением трансформатора, проверить действие защитных аппаратов при однофазном к. з. в наиболее удаленных точках линии для следующих вариантов:
1. Линия защищена предохранителями с плавкими вставками на номинальный ток 80 а.
2. Линия защищена автоматическим выключателем типа А 3124 с комбинированными расцепителями на номинальный ток 100 а.
3. Линия защищена автоматическим выключателем типа А 3124 с электромагнитными расцепителями с уставкой тока срабатывания 600 а.

Рис. 7-1. Схема к примеру

С оображения, по которым выбран тот или иной аппарат защиты, здесь не рассматриваются. Пример имеет ограниченную цель - показать типичные случаи проверки защитного отключения при однофазном к. з.

Решение.
Условие срабатывания аппаратов защиты проверяем по формуле (7-5). Определяем сопротивления петли фазного и нулевого проводов линии при однофазном к. з. в такой точке, для которой значение сопротивления будет наибольшим. По табл. 7-.3 находим значения удельных сопротивлений петли "фаза - нуль" для сечений участков линии:

3 X 70+1 X 35 Z n= 1 ,53 ом/км;
3 X 35+1 X 16 Zn=
3 , 0 ом / км ;
3 X
16 +1 X 16 Zn= 4 , 0 3 ом / км ;

Определяем, какая из точек Д или Е является расчетной. Сопротивление петли между точками Г и Д

4,03 X 0,08=0,323 ом;

сопротивление петли между точками Г и Е

3 X 0,13=0,39 ом.

Расчетной оказывается точка Е. Полное сопротивление петли "фаза - нуль" между точками А и Е составляет:

Zn= 1,53(0,07+0,08) +0,39 = 0,62 ом.

Номинальное фазное напряжение

U н = 220 в.

Определяем величину однофазного тока при к. з. в наиболее удаленной точке Е сети (по условию примера следует принять Zт= 0):

Проверяем выполнение условия (7-5) для всех трех вариантов защиты линии.
Вариант 1.
Допустимая минимальная кратность тока к. з. по отношению к номинальному току плавкой вставки предохранителя согласно табл. 7-8 равна:

К 31 = 3.
Отсюда: 3х80=240 а<355 а.

Таким образом, надежное действие защищающих линию предохранителей обеспечивается.
Вариант 2.
Допустимая кратность тока к. з. по отношению к тепловому элементу комбинированного расцепителя, имеющему обратно зависящую от тока характеристику, равна:

К 31 = 3.
Отсюда соотношение (7-5)
3х100=300 а<355 а
выполняется.
Вариант 3.
По данным завода гарантируемая точность уставки для автоматических выключателей типа А 3124 составляет ±15%. Приняв в соответствии с указанием табл. 7-8 коэффициент запаса равным 1,1, получим:

К 31 = 1,1х1,15=1,27;
1,27х600=760 а>355 а.

Надежность действия автоматического выключателя при к. з. в точке Е не обеспечивается.

Пример 7-2.
В системе с глухо заземленной нейтралью при напряжении 380/220 в линия защищается предохранителями с плавкими вставками на номинальный ток 100 а. Полагая Zт = 0, определить наибольшую длину линии, при которой будет обеспечиваться надежное перегорание предохранителей при однофазном к. з. в конце линии для следующих вариантов выполнения линии:
1. Воздушная линия с алюминиевыми проводами сечением 3 X 50+1 X 25 мм.кв.
2. Трехжильный кабель с алюминиевыми жилами сечением 3X50 мм.кв в алюминиевой оболочке, используемой в качестве заземляющего провода.
3. Трехжильный небронированный кабель с алюминиевыми жилами сечением 3 X 50 мм.кв с заземляющей шиной в виде стальной полосы сечением 50 X 4 мм.

Решение.
По табл. 7-8 определяем минимально допустимую кратность тока к. з.:

К 31 = 3.

Наименьшая допустимая величина однофазного тока к. з.

I
к = 3х100=300 а.

Учитывая, что по условию примера Zт = 0, находим по формуле (7-1) наибольшее допустимое сопротивление "фаза - нуль" линии:

Определяем удельное сопротивление 1 км петли "фаза - нуль": для варианта 1 по табл. 7-3
Z п = 2,03 ом/км;
для варианта 2
Z п = 1,03 ом/км;
для варианта 3 по табл. 7-6
Z п = 2,74 ом/км.

Наибольшие допустимые длины линии будут равны:
вариант 1

вариант 2

вариант 3

Наибольшая длина линии обеспечивается применением кабеля с использованием алюминиевой оболочки в качестве заземляющего (нулевого) провода.

Со временем эксплуатации линии электроснабжения в них происходят изменения, которые невозможно проконтролировать визуально или установить их с помощью математических расчетов. Для стабильной и бесперебойной работы электрооборудования необходимо периодически делать замеры определенных параметров. Одним из них является измерение петли фаза-ноль, которое делают при помощи специальных приборов. Если фазный провод замкнуть на нулевой в точке потребления, то между фазным и нулевым проводником создается контур, который и является петлей фаза-ноль. В нее входят: трансформатор, рубильники, выключатели, пускатели – все коммутационное оборудование. Ниже мы расскажем читателям , как измерить сопротивление петли, предоставив существующие методики и оборудование.

Периодичность и назначение замеров

Для надежной работы электросети необходимо периодически проводить проверку силового кабеля и оборудования. Перед сдачей объекта в эксплуатацию, после капитального и текущего ремонта электросетей, после проведения пуско-наладочных работ, а также по графику, установленном руководителем предприятия проводят эти испытания. Измерения делают по следующим основным параметрам:

  • сопротивление изоляции;
  • сопротивление петли фаза-ноль;
  • параметры заземления;
  • параметры автоматических выключателей.

Основной задачей измерения параметра петли фаза-ноль является защита электрооборудования и кабелей от , возникающих в процессе эксплуатации. Повышенное сопротивление может привести к перегреву линии, и как следствие, к пожару. Большое влияние на качество кабеля, воздушной линии оказывает окружающая среда. Температура, влажность, агрессивная среда, время суток – все это оказывает влияние на состояние сети.

В цепь для проведения замеров включают контакты автоматической защиты, рубильники, контакторы, а также проводники подачи напряжения к электроустановкам. Этими проводниками могут быть силовые кабели, подающие фазу и ноль, или воздушные линии, выполняющие эту же функцию. При наличии защитного заземления — фазный проводник и провод заземления. Такая цепь имеет определенное сопротивление.

Полное сопротивление петли фаза-ноль можно рассчитать с помощью формул, которые будут учитывать сечение проводников, их материал, протяженность линии, хотя точность расчетов будет небольшой. Более точный результат можно получить, измерив физическую цепь с имеющимися устройствами.

В случае использование в сети устройства защитного отключения (), его при измерении необходимо отключить. Параметры УЗО рассчитаны так, что при прохождении больших токов оно произведет отключение сети, что не даст достоверных результатов.

Обзор методик

Существуют разные методики для проверки петли фаза-ноль, а также разнообразные специальные измерительные приборы. Что касается методов измерения, основными считаются:

  1. Метод падения напряжения. Замеры проводят при отключенной нагрузке, после чего подключают нагрузочное сопротивление известной величины. Работы выполняются с использованием специального устройства. Результат обрабатывают и с помощью расчетов делают сравнение с нормативными данными.
  2. Метод короткого замыкания цепи. В этом случае проводят подключение прибора к цепи и искусственно создают короткое замыкание в дальней точке потребления. С помощью прибора определяют ток короткого замыкания и время срабатывания защит, после чего делают вывод о соответствии нормам данной сети.
  3. Метод амперметра-вольтметра. Снимают питающее напряжение после чего, используя понижающий трансформатор на переменном токе, замыкают фазный провод на корпус действующей электроустановки. Полученные данные обрабатывают и с помощью формул определяют нужный параметр.

Основной методикой такого испытания стало измерение падения напряжения при подключении нагрузочного сопротивления. Этот метод стал основным, ввиду его простоты использования и возможности дальнейших расчетов, которые нужно провести для получения дальнейших результатов. При измерении петли фаза-ноль в пределах одного здания, нагрузочное сопротивление включают на самом дальнем участке цепи, максимально удаленном от места подачи питания. Подключение приборов проводят к хорошо очищенным контактам, что нужно для достоверности замеров.

Сначала проводят измерение напряжения без нагрузки, после подключения амперметра с нагрузкой замеры повторяют. По полученным данным делают расчет сопротивления цепи фаза-ноль. Используя готовое, предназначенное для такой работы устройство, можно сразу по шкале получить нужное сопротивление.

После проведения измерения составляют протокол, в который заносят все нужные величины. Протокол должен быть стандартной формы. В него также вносят данные об измерительных приборах, которые были использованы. В конце протокола подводят итог о соответствии (несоответствии) данного участка нормативно-технической документации. Образец заполнения протокола выглядит следующим образом:

Какие приборы используют?

Для ускорения процесса измерения петли промышленность выпускает разнообразные измерительные приборы, которые можно использовать для замеров параметров сети по различным методикам. Наибольшую популярность набрали следующие модели:


О том, как измерить сопротивление петли фаза-ноль с помощью приборов, вы можете узнать, просмотрев данные видео примеры.

В статье рассмотрены метод расчета сопротивления цепи фаза - ноль в электроустановках напряжением до 1000 В с глухозаземленной нейтралью и правила вычисления тока короткого замыкания в линии, что позволяет проверить согласование параметров цепи с характеристиками аппаратов защиты при электроустановки. Приведенные в статье данные предназначены в первую очередь для расчетов распределительных и групповых сетей.

Для выполнения расчетов токов короткого замыкания в трансформаторных подстанциях необходимо дополнительно учитывать тип, мощность, схему подключения, и напряжение на входе трансформатора. Поэтому использование данной работы для расчета трансформаторных подстанций позволит лишь приблизительно оценить их параметры.

В общем случае сопротивление цепи фаза ноль R L - N равно:

где Z т /3 - сопротивление трансформатора, Ом; R Σ пер - суммарное переходное сопротивление контактов, Ом; R Σ авт -суммарное сопротивление всех автоматических выключателей, Ом; R n - удельное сопротивление n-го участка цепи Ом/км (по таблице 1); L n - длина n-го участка цепи, км; R дуги - сопротивление дуги в месте короткого замыкания, Ом.

Таблица 1

Сечение фазных жил мм 2

Сечение нулевой жилы мм 2

Полное сопротивление цепи фаза - ноль, Ом/км при температуре жил кабеля +65 градусов

Материал жилы:

Алюминий

Z цепи (кабеля)

Z цепи (кабеля)

Таблица 2

Мощность трансформатора, кВ∙А

Сопротивление трансформатора, Zт/3, Ом (Δ/Υ)

Таблица 3

I ном. авт. выкл, А

50 и более

Таблица 4

R цепи, Ом

При проектировании групповой сети, если питающая и распределительная сеть уже проложены, целесообразно выполнить измерение сопротивления цепи фаза - ноль от трансформатора до шин группового щита. Это может значительно уменьшить вероятность ошибок при расчетах групповой сети. В этом случае сопротивление рассчитываем по формуле:

R L - N = R расп + R пер.гр + R авт.гр + Rn гр ∙Ln гр +Rдуги (2)

где, R расп - измеренное сопротивление цепи фаза - ноль линии, подключаемой к вводному автоматическому выключателю группового щитка, Ом; R пер.гр - сопротивление переходных контактов в групповой линии, Ом; R авт.гр - суммарное сопротивление автоматических выключателей - вводного группового щита и отходящей групповой линии, Ом; Rn гр - удельное сопротивление кабеля n-й групповой линии (по таблице 1), Ом/км; Ln гр - длина n-й групповой линии, км.

Рассмотрим процесс вычисления сопротивления цепи фаза - ноль схемы, показанной на Рис.1 при однофазном коротком замыкании фазы на ноль в конце групповой линии.


Исходные данные:

Трансформатор мощностью 630 кВ∙А подключен по схеме «треугольник - звезда» - по таблице 2 находим Zт/3=0,014 Ом;

Питающая сеть - кабель с алюминиевыми жилами длиной 80 метров имеет фазный проводник 150 мм 2 и нулевой - 50 мм 2 . По таблице 1 находим удельное сопротивление кабеля 0,986 Ом/км. Вычисляем его сопротивление (длины кабелей выражаем в километрах): 0,986 Ом/км∙0,08 км=0,079 Ом;

Распределительная сеть - кабель с медными жилами длиной 50 метров и сечением жил 35 мм 2 . По таблице 1 находим удельное сопротивление кабеля 1,25 Ом/км. Вычисляем его сопротивление:

1,25 Ом/км∙0,05 км=0,0625 Ом;

Групповая сеть - кабель с медными жилами длиной 35 метров и сечением жил 2,5 мм 2 . По таблице 1 находим удельное сопротивление кабеля 17,46 Ом/км. Вычисляем его сопротивление:

17,46 Ом/км∙0,035 км=0,61 Ом;

Автоматический выключатель отходящий линии - 16 Ампер (с характеристикой срабатывания «С»), вводной автоматический выключатель группового щитка 32 Ампера, остальные автоматические выключатели в линии имеют номинальный ток более 50 Ампер. Вычисляем их сопротивление (по таблице 3) 0,01 Ом+0,004 Ом+3∙0,001 Ом=0,017 Ом;

Переходные сопротивления контактов учтем только в групповой линии (точки подключения кабеля групповой линии к щитку и к нагрузке). Получаем 2∙0,01 Ом=0,02 Ом.

Суммируем все полученные значения и получаем сопротивление цепи фаза - ноль без учета сопротивления дуги R L - N =0,014+0,079+0,0625+0,61+0,017+0,02=0,80 Ом.

Из таблицы 4 берем сопротивление дуги 0,075 Ом, и получаем окончательное значение искомой величины R L - N =0,80 Ом+0,075 Ом=0,875 Ом.

В Правилах устройства электроустановок (ПУЭ) задано наибольшее время отключения цепей при коротком замыкании в сетях с глухозаземленной нейтралью 0,2 секунды при напряжении 380 В и 0,4 секунды при напряжении 220В.

Для обеспечения заданного времени срабатывания защиты необходимо, что бы при коротком замыкании в защищаемой линии возникал ток, превышающий не менее чем в 3 раза номинальный ток плавкой вставки ближайшего предохранителя (для взрывоопасных помещений не менее чем в 4 раза) и не менее чем в 3 раза ток расцепителя автоматического выключателя, имеющего обратнозависимую от тока характеристику (для взрывоопасных помещений не менее чем в 6 раз). Для автоматических выключателей с комбинированным расцепителем (имеющим тепловой расцепитель для защиты от перегрузок и электромагнитный расцепитель для защиты от токов коротких замыканий) ток короткого замыкания должен превысить ток срабатывания электромагнитного расцепителя не менее, чем в 1,2 - 1,25 раза.

В настоящее время используются автоматические выключатели с различной кратностью токов срабатывания электромагнитного расцепителя к тепловому. Автоматические выключатели группы «В» имеют кратность в пределах от 3 до 5, группы «С» от 5 до 10, группы «D» от 10 до 20, группы «K» от 10 до 15 и группы «Z» от 2 до 3. При расчетах всегда берется максимальное значение кратности токов срабатывания расцепителей. Например для автоматического выключателя С16, ток короткого замыкания должен быть не менее 16 А∙10∙1,2=192 А (для автоматического выключателя С10 не менее10А∙10∙1,2=120 А и для С25 не менее 25 А∙10∙1,2=300 А). В приведенном выше примере мы получили сопротивление цепи фаза - ноль 0,875 Ом. При таком сопротивлении цепи ток короткого замыкания Iкз составит величину

U ф / R L - N =220В/0,875 Ом=251 А. Следовательно групповая линия в приведенном примере защищена от токов коротких замыканий.

Максимальное сопротивление цепи фаза - ноль для автоматического выключателя С16 составит величину 220 В/192А=1,14 Ом. В приведенном примере сети (Рис. 1) сопротивление цепи от трансформатора до шин группового щита составит 0, 875 Ом - 0,61 Ом=0.265 Ом. Следовательно максимально возможное сопротивление кабеля групповой линии будет равно 1,14 Ом - 0, 265 Ом=0,875 Ом. Его максимальную длину L при сечении жил кабелей 2,5 мм 2 определим при помощи таблицы 1.

L, км=0,875 Ом/(17,46 Ом/км)=0,050 км.

Всегда, когда есть возможность, следует рассчитывать групповую сеть с максимальным запасом по сопротивлению цепи фаза - ноль, особенно розеточную сеть. Часто нагрузки (утюг, чайник и другие бытовые приборы), в которых часто происходят замыкания, подключают к розетке через удлинитель. Начиная с определенной длины провода удлинителя, нарушается согласование параметров цепи с характеристиками аппаратов защиты, то есть оказывается недостаточным для мгновенного отключения сети. Отключение аварийного участка осуществится только тепловым расцепителем через сравнительно большой промежуток времени (несколько секунд), в результате чего кабели могут нагреться до недопустимо высоких температур вплоть до воспламенения изоляции.

Проект электропроводки должен быть выполнен таким образом, что бы даже в случае воспламенения изоляции кабеля при коротком замыкании это не приводило к пожару. Именно поэтому возникли к прокладке скрытой электропроводки в стальных трубах в зданиях со строительными конструкциями, выполненными из горючих материалов. Во взрывоопасных зданиях целесообразно использовать более сложную защиту кабелей от воздействия .

Все мы хотим видеть электроснабжение нашего электрооборудования безопасным и безупречным, но не всегда желаемое можно выдавать за действительное. В процессе беспощадной эксплуатации энергосистемы и электрооборудования, пользователи забывают о том, что её надо периодически обследовать и заранее выявлять всевозможные неисправности. Не стоит дожидаться, когда пропадёт фаза в недрах скрытой электропроводки, а для включения электрооборудования срочно надо искать калоши и диэлектрические перчатки, подпирая палкой постоянно отключающийся автоматический выключатель. Как же уберечь себя от свалившихся на голову неприятностей? Для предупреждения и устранения вышеперечисленных неисправностей, требуется периодически проводить комплекс электроизмерений. В этой статье мы хотим рассказать вам о замере сопротивления цепи «фаза — нуль». Как и для каких целей требуется проводить замер сопротивления цепи «фаза — нуль».

Статьи цикла:»Электролаборатория и электроизмерения»:
1. Электролаборатория и электроизмерения. Введение
2. Что такое электролаборатория и для чего нужны электроизмерения
3. Электролаборатория. Смета на проведение комплекса электроизмерений электросети. Расчёт стоимости работ на электроизмерения
4. Электролаборатория проводит визуальный осмотр электропроводки и электрооборудования
5. Электролаборатория. Замер заземления. Электропроводка. Электрооборудование
6. Электролаборатория. Замер сопротивления изоляции. Электроизмерения. Электропроводка
7. Электролаборатория. Замер сопротивления цепи “фаза-нуль”. Электроизмерения
8. Электролаборатория – замеры и испытание выключателей автоматических управляемых дифференциальным током (УЗО)
9. Электролаборатория выполняет испытания (прогрузку) автоматических выключателей
10. Электролаборатория проводит электроизмерение “Замер сопротивления заземляющих устройств”

Протокол электроизмерения петли "фаза - нуль"

Читайте также:


  • Очень часто специалисты электролаборатории (инженеры эл.наладчики) слышат в свою сторону укоры, что работа по комплексу электроизмерений бессмысленна и бесполезна, так как она влечёт за собой дополнительные затраты со стороны заказчиков. Давайте...


  • Игорь Какое именно оборудование проверяется и какова периодичность профилактического измерения электрооборудования и электросетей в офисных центрах. Ответ: Испытаниям и электроизмерениям подлежат все электроустановки здания, от вводного аппарата защиты в вводно-распределительном устройстве до розеток...


  • Андрей Электролаборатория в результате замера сопротивления петли “фаза-нуль” на мостовом кране (1971 года ввода в эксплуатацию) выдала заключение, что вводной автомат (А3144 600А Iуст. тепл=750А, Iкз=4200А) не прошел проверку, т.к. Zфаза-0=0.35 ...


  • Виктор Степанович Что включает в себя замер полного сопротивления цепи ” фаза-нуль”? Подскажите, как часто должен производиться замер полного сопротивления цепи “фаза-нуль”? В соответствии с ПТЭЭП для контроля чувствительности защит к однофазным...


  • Вячеслав Выполняя электроизмерения, замер сопротивления петли “фаза-нуль”, прибор показал на одной фазе 1.3 Ом, на остальных — 0.8 Ом. Питающий кабель ВВГ 4 х 6, медь. Длина кабельной линии 40метров, установлен...

15 Комментария(-ев) на ”Электролаборатория. Замер сопротивления цепи «фаза-нуль». Электроизмерения”

    Здравствуйте!

    Подскажите каким проводом будит правильно заземлить передвижную эл.установку 380В. Проводом ПЩ или ПВЗ(в оболочке). Просто на одном комплексе видел заземление смонтированное проводом ПЩ который был в прозрачной оболочке на барабане.Комплексы нового поколения Узо итп.

    Здравствуйте,Алексей!Согласно ПУЭ, заземляющие проводники,а также защитные, и проводники уравнивания потенциалов в передвижных электроустановках должны быть медными, гибкими.Наименьшее сечение заземляющих проводников должно равняться:
    1.сечению фазных проводников, при сечении до 16 кв мм.,
    2.16 кв.мм. при сечении фазных проводников от 16 до 35 кв мм,
    3.сечению фазного провода пополам при сечении фазного провода более 35 кв мм.

    Здравствуйте! Большое спасибо за ответ. Про сечение ясно.Так каким проводом должно(и может допускаться) выполнение заземления. Многопроволочным проводом с полвинилхлорид. изоляцией или ПЩ без изоляции? Вот на это мне нужен ответ. Спасибо

    Здравствуйте! Проверяемый щиток состоит из вводного автомата и пяти отходящих. Проверяю петлю фаза-ноль. С отходящими все понятно: оцениваются по току КЗ. Но как вводить в отчет этот вводной автомат, и каковы критерии его оценки? Как быть с током КЗ для него?

    • Здравствуйте, Олег!
      Значение тока однофазного короткого замыкания не нормируется, однако в соответствии с ПУЭ-7 ток должен быть достаточным для обеспечения требуемого времени срабатывания. Вам необходимо во время замеров сопротивления петли «фаза-нуль» определить фактическое значение тока однофазного короткого замыкания. Значение тока однофазного короткого замыкания определяется расчетным путем на основании значения сопротивления петли «фаза-нуль», полученного путем замеров во время испытаний. Требуется убедиться, что фактический ток однофазного короткого замыкания обеспечивает время срабатывания защитного аппарата, не превышающее значений, нормированных п. 1.7.79 ПУЭ-7 п. 1.7.79, для чего необходимо иметь времятоковую (обратнозависимую) характеристику этого защитного аппарата. Если документация завода-изготовителя на соответствующие защитные аппараты, содержащая времятоковые характеристики, отсутствует, то эти характеристики следует снимать при выполнении пусконаладочных работ или периодических электроиспытаний.

    Здравствуйте! Подскажите, пожалуйста, ответ на такой вопрос: какова допустимая величина сопротивления заземляющего проводника? Заранее благодарна!

    Ваш сайт изумительный. Случайно попал. Всё лаконично, конкретно, общедоступно, профессионально. Спасибо. Вопрос: при подключении оборудования цеха трёхфазным напряжением, возможно-ли подключение однофазного местного освещения станков к этой сети?

    • Здравствуйте, Сергей!

    Доброго времени суток!
    Ответьте, пожалуйста, на вопрос: Мне нужно измерить цепи «фаза- нуль» в ВРУ, в котором есть несколько отходящих линий… Каким образом и в какой последовательности я должен делать замеры? А самое главное в каком месте? И какое количество записей я должен сделать в протоколе?

    Заранее спасибо!

    Добрый день, подскажите, какой процент линий в электроустановке подлежит проверке при периодических испытаниях петли ф-0 и сопротивления изоляции?

    • Здравствуйте, Георгий!
      Ваш вопрос перенаправлен на . Вы можете зарегистрироваться на форуме и более подробно обсудить « » с участниками форума.