Передняя поверхность сверла является частью. Конструктивные элементы сверла

Спиральное сверло, состоит из рабочей части 6, шейки 2, хвостовика 4 и лапки 3. В рабочей части 6 различают режущую 1 и направляющую 5 части с винтовыми канавками. Шейка 2 соединяет рабочую часть сверла с хвостовиком. Хвостовик 4 необходим для установки сверла в шпинделе станка. Лапка 3 служит упором при выбивании сверла из отверстия шпинделя.

Точность и шероховатость поверхности, получаемые при сверлении

Диаметр отверстия при сверлении получается несколько больше диаметра сверла. Это объясняется тем, что сверло уводит в сторону от оси отверстия даже при незначительных неправильностях, допущенных при заточке сверла и его установке на станке, а также при неравномерной твердости обрабатываемого материала.

Сверление. Основные типы сверлильных станков и их назначение. Параметры режима резания при сверлении (V, S, t, TO) и последовательность их рационального сочетания.

Сверление – основной технологический способ получения отверстий (сквозных или глухих) в сплошном металле заготовок.

Сверлильные станки предназначены для обработки заготовок осевыми инструментами (свёрла, зенкеры, развёртки, метчики).


За скорость резания (м/мин) при сверлении принимают окружную скорость точки режущей кромки, наиболее удаленной от оси сверла: v = (π*D*n)/1000, где D – наружный диаметр сверла, мм; n – частота вращения сверла, об/мин.

Подача SB (мм/об) равна осевому перемещению сверла за один оборот.

За глубину резания t (мм) при сверлении отверстий в сплошном материале принимают половину диаметра сверла: t = D/2, а при рассверливании t = (D – d)/2, где d – диаметр обрабатываемого отверстия, мм.

Параметры режима резания на фрезерных станках и последовательность определения их рационального.

РАСЧЕТ РАЦИОНАЛЬНЫХ ПАРАМЕТРОВ РЕЖИМА РЕЗАНИЯ

ПАРАМЕТРЫ РЕЗАНИЯ ПРИ ФРЕЗЕРОВАНИИ

D – диаметр фрезы

Sz – подача на зуб

t – глубина фрезерования

Y – угол контакта

B – ширина фрезерования

Последовательность расчета рационального режима фрезерования

Зенкерование и развёртывание. Цели зенкерования и развёртывания. Шероховатость и точность отверстий в конструкционных сталях, достигаемые при зенкеровании и развёртывании.Основные части зенкера и развёртки. Параметры режима резания при сверлении и развёртывании.

Зенкерование – технологический способ обработки отверстий, полученных сверлением, литьём, штамповкой, а также обработки торцевых и конусных поверхностей.

Цель зенкерования – повысить точность и чистоту обработанных отверстий и поверхностей.

Точность растёт, а шероховатость падает за счёт:

Большого числа режущих зубьев у зенкера (3…8);

Повышенной жесткости зенкеров;

Самоцентрирования зенкеров при обработки;

Меньшей скорости резания.

Виды зенкерования:

Черновое (предварительное) снятие припуска;

Чистовое (шероховатость Ra 6,3…3,2 мкм).

Стойкость – Т=30…80 мин в зависимости от обрабатываемого материала.

Развёртывание – технологический способ завершающей обработки просверленных, зенкованных или расточенных отверстий.

Цель развёртывания – получение точных по форме и диаметру отверстий с малой шероховатостью.

Обеспечивается:

Малым припуском и последующим его снятием;

Большим числом режущих зубьев (8…20);

Малой Vрез и S;

Обильной смазкой.

Стойкость Т=40…100 мин в зависимости от обрабатываемого материала.


ТИПЫ ЗЕНКЕРОВ

а) цельный с коническим хвостовиком;

б) с вставными ножами и цельной державкой с коническим хвостовиком;

в) насадные цельные из быстрорежущих сталей;

г) насадные с пластинками твердого сплава;

д) насадные с вставными ножами;

е) для цилиндрических углублений;

ж) торцевые;

з) для обработки центровых отверстий;

и) для конических углублений


Типы разверток:

А – ручная цилиндрическая:

1 – рабочая часть; 2 – шейка; 3 – хвостовик;

Lн - направляющий конус; Lр - режущая часть;

Lк - калибрующая часть; Lоб - обратный конус.

Б – машинная цельная с коническим хвостовиком.

В – ручная регулируемая (разжимная).

Г – конические под конус Морзе.

1 – черновая; 2 – получистовая; 3 – чистовая.

Конструктивные элементы зенкера:

1 - режущая (заборная), 2 - калибрующая, 3 - рабочая части, 4 - шейка, 5 - хвостовик, 6 - ленточка

Основными конструктивными элементами развёртки являются режущая и калибрующая части, число зубьев, направление зубьев, углы резания, шаг зубьев, профиль канавки, зажимная часть.

Режущая часть.

Угол конуса φ определяет форму стружки и соотношение составляющих усилий резания. Угол φ у ручных развёрток – 1°…2°, что улучшает направление развёртки при входе и уменьшает осевую силу; у машинных при обработке стали φ = 12°…15°; при обработке хрупких материалов (чугуна) φ = 3°… 5°.

Стандартные развёртки делают с неравномерным окружным шагом с целью предупреждения появления в развёртываемом отверстии продольных рисок. Из-за неоднородности обрабатываемого материала на зубьях развёртки происходит периодическое изменение нагрузки, что ведёт к отжиму развёртки и появлению на обработанной поверхности следов в виде продольных рисок.

Калибрующая часть состоит из двух участков: цилиндрического и участка с обратной конусностью. Длина цилиндрического участка около 75% от длины калибрующей части. Цилиндрический участок калибрует отверстие, а участок с обратной конусностью служит для направления развертки в работе. Обратная конусность уменьшает трение об обработанную поверхность и снижает разбивку. Т.к. при ручном развертывании разбивка меньше, то и угол обратной конусности у ручной развёртки меньше, чем у машинной. При этом цилиндрический участок у ручных развёрток может отсутствовать.

Цилиндрическая ленточка на калибрующей части калибрует и выглаживает отверстие. Уменьшение её ширины снижает стойкость развертки, однако повышает точность обработки и снижает шероховатость, т.к. уменьшает трение. Рекомендуемая ширина ленточки f = 0,08…0,5 мм в зависимости от диаметра развёртки.

Число зубьев z ограничивается их жёсткостью. С увеличением z улучшается направление развертки (больше направляющих ленточек), повышаются точность и чистота отверстия, но снижается жесткость зуба и ухудшается отвод стружки. Z принимается чётное - для облегчения контроля диаметра развёртки.

Канавки чаще выполняют прямыми, что упрощает изготовление и контроль. Для обработки прерывистых поверхностей целесообразно применять развёртки с винтовым зубом. Направление канавок делается противоположным направлению вращения для избежания самозатягивания и заедания развёртки.

Задний угол выполняют небольшой (5°…8°) для повышения стойкости развёртки. Режущую часть затачивают до остра, а на калибрующей делают цилиндрическую ленточку для повышения размерной стойкости и улучшения направления в работе.

Передний угол принимают равным нулю.

Зенкерами обрабатывают отверстия в литых или штампованных заготовках, а также предварительно просверленные отверстия. В отличие от сверл зенкеры снабжены тремя или четырьмя главными режущими кромками и не имеют поперечной кромки. Режущая часть выполняет основную работу резания. Калибрующая часть служит для направления зенкера в отверстии и обеспечивает необходимую точность и шероховатость поверхности. По виду обрабатываемых отверстий зенкеры делят на цилиндрические, конические и торцовые. Зенкеры бывают цельные с коническим хвостовиком и насадные.

Развертками окончательно обрабатывают отверстия. По форме обрабатываемого отверстия различают цилиндрические и конические развертки. Развертки имеют 6 – 12 главных режущих кромок, расположенных на режущей части с направляющим конусом. Калибрующая часть направляет развертку в отверстии и обеспечивает необходимую точность и шероховатость поверхности. По конструкции крепления развертки делят на хвостовые и насадные.

Протягивание – назначение, преимущества и недостатки. Шероховатость и точность, обеспечиваемая при протягивании в деталях из конструкционных сталей. Основные части протяжек и прошивок. Параметры режима резания при протягивании.

Протягивание – технологический способ обработки заготовок с помощью многолезвийных инструментов: протяжек и прошивок.

Протягиванием обрабатывают сквозные отверстия и наружные поверхности разнообразных форм.

Основные преимущества:

1. Высокая производительность.

2. Высокая точность (JT 7…6).

3. Малая шероховатость (Ra= 0,16 мкм).

4. Возможность упрочнения обработанной поверхности.

Недостатки:

1. Сложность изготовления инструмента.

2. Высокая стоимость инструмента.

3. Горизонтальные протяжные станки занимают большую площадь

ПОСЛЕДОВАТЕЛЬНОСТЬ РАСЧЕТА РАЦИОНАЛЬНОГО РЕЖИМА РЕЗАНИЯ ПРИ ПРОТЯГИВАНИИ

КЛАССИФИКАЦИЯ ПРОТЯЖЕК

Принципиальное отличие протягивания от других видов механической обработки заключается в том, что при потягивании отсутствует движение подачи (Ds). Движение подачи заложено в конструкции инструмента.
Размер каждого последующего режущего элемента протяжки больше предыдущего на величину, численно равную Sz – подачи на зуб.
Каждый зуб протяжки в отличии от зуба фрезы только один раз участвует в обработке данной заготовки.
Все протяжки работают на растяжение, так как сила прикладывается к замковой части.
Если сила прикладывается к задней части протяжки, то такой метод обработки называется прошивание, а инструмент – прошивкой.
Прошивка работает на сжатие и продольный изгиб, поэтому прошивку делают короче (200…300 мм)


ЧАСТИ И ГЕОМЕТРИЯ ПРОТЯЖКИ


ТИПЫ ПРОТЯЖНЫХ СТАНКОВ

Протяжки: по характеру обрабатываемых поверхностей протяжки делят на две основные группы: внутренние и наружные. Внутренними протяжками обрабатывают различные замкнутые поверхности, а наружными – полузамкнутые и открытые поверхности различного профиля. По форме различают круглые, шлицевые, шпоночные, многогранные и плоские протяжки. По конструкции зубьев протяжки бывают режущими, выглаживающими и деформирующими. В первом случае зубья имеют режущие кромки, в двух последних – скругленные, работающие по методу пластического деформирования. Различают также сборные протяжки со вставными ножами, оснащенными пластинками из твердого сплава.

Элементы круглой протяжки: замковая часть (хвостовик) l1 служит для закрепления протяжки в патроне тянущего устройства станка; шейка l2 – для соединения замковой части с передней направляющей частью; передняя направляющая часть l3 вместе с направляющим конусом – для центрирования обрабатываемой заготовки в начале резания. Режущая часть l4 состоит из режущих зубьев, высота которых последовательно увеличивается на толщину срезаемого слоя, и предназначена для срезания припуска. Калибрующая часть l5 состоит из калибрующих зубьев, форма и размеры которых соответствуют форме и размерам последнего режущего зуба, и предназначена для придания обработанной поверхности окончательных размеров, необходимой точности и шероховатости. Задняя направляющая часть l6 служит для направления и поддержания протяжки от провисания в момент выхода последних зубьев калибрующей части из отверстия. Для облегчения образования стружки на режущих зубьях выполняют стружкоделительные канавки.

Скорость резания при протягивании – это скорость поступательного движения v протяжки относительно заготовки. Скорость резания лимитируется условиями получения обработанной поверхности высокого качества и ограничивается технологическими возможностями протяжных станков. Обычно v = 8…15 м/мин. Подача при протягивании как самостоятельное движение инструмента или заготовки отсутствует. За величину подачи sz, определяющую толщину срезаемого слоя отдельным зубом протяжки, принимают подъем на зуб, т.е. разность размеров по высоте двух соседних зубьев протяжки; sz является одновременно и глубиной резания. Подача в основном зависит от обрабатываемого материала, конструкции протяжки и жесткости заготовки и составляет 0,01…0,2 мм/зуб.

69 На зубообрабатывающих станках выполняют обработку фасонных поверхностей различного профиля, равномерно расположенных по окружности, однако преимущественно обрабатывают фасонные поверхности эвольвентного профиля, используемые для профилирования боковых поверхностей зубьев зубчатых колес. Различают два метода получения фасонных профилей, равномерно расположенных по окружности: копирование и обкатку (огибание). Копирование – метод, основанный на профилировании, например, зубьев фасонным инструментом, профиль режущей части которого соответствует профилю впадины нарезаемого зубчатого колеса. В процессе фрезерования впадины между зубьями колеса сообщают фрезе главное вращательное движение, а заготовке – продольную подачу. По окончании фрезерования одной впадины стол отводят в исходное положение и заготовку поворачивают на 1/z части оборота (z – число зубьев нарезаемого зубчатого колеса). Концевыми фрезами нарезают зубчатые колеса больших модулей и шевронные колеса. При использовании инструмента с различным профилем режущей части можно получать детали любого фасонного профиля, равномерно расположенного по окружности. Метод копирования не обеспечивает высокой точности и имеет сравнительно низкую производительность. Обкатка – метод, основанный на зацеплении зубчатой пары: режущего инструмента и заготовки. Различные положения режущих кромок относительно формируемого профиля зубьев на заготовке получают в результате кинематически согласованных вращательных движений инструмента и заготовки на зуборезном станке. Метод обкатки обеспечивает непрерывное формообразование зубьев колеса. Нарезание зубчатых колес этим методом получило преимущественное распространение вследствие высокой производительности и значительной точности обработки. Наиболее широко применяют нарезание зубчатых колес методом обкатки на зубофрезерных, зубодолбежных и зубострогальных станках.

Червячная модульная фреза представляет собой винт с прорезанными перпендикулярно к виткам канавками. В результате этого на червяке образуются режущие зубья, расположенные по винтовой линии. Профиль зуба фрезы в нормальном сечении имеет трапецеидальную форму и представляет собой зуб рейки С задним α и передним γ углами заточки. Червячные фрезы изготовляют однозаходными и многозаходными. Чем больше число заходов, тем выше производительность фрезы, но ниже точность. Червячными модульными фрезами нарезают цилиндрические колеса с прямыми и косыми зубьями и червячные колеса. Зуборезный долбяк представляет собой зубчатое колесо, зубья которого имеют эвольвентный профиль с задним α и передним γ углами заточки. Различают два типа долбяков: прямозубые для нарезания цилиндрических колес с прямыми зубьями и косозубые для нарезания цилиндрических колее с косыми зубьями. Зубострогальный резец имеет призматическую форму с соответствующими углами заточки и прямолинейной режущей кромкой. Передний γ и задний α углы образуются при установке резца в резцедержателе станка. Эти резцы применяют попарно для нарезания конических зубчатых колес с прямыми зубьями.

Основные типы зуборезных станков: зубофрезерный станок, зубодолбёжный станок, зубостругальный станок.

70

71 ОТДЕЛОЧНАЯ ОБРАБОТКА ЗУБЬЕВ ЗУБЧАТЫХ КОЛЕС

В процессе нарезания зубчатых колес на поверхностях зубьев возникают погрешности профиля, появляется неточность шага зубьев и др. Для уменьшения или ликвидации погрешностей зубья дополнительно обрабатывают. Отделочную обработку для зубьев незакаленных колес называют шевингованием. Предварительно нарезанное прямозубое или косозубое колесо 2 плотно зацепляется с инструментом / (рис. 6.100, а). Скрещивание их осей обязательно. Обработка состоит в срезании (соскабливании) с поверхности зубьев очень тонких волосообразных

Рис. 6.100. Схемы отделочной обработки зубьев зубчатых колес

стружек, благодаря чему погрешности исправляются, зубчатые колеса становятся более точными, значительно сокращается шум при их работе.

Отделку проводят специальным металлическим инструментом - шевером (рис. 6.100, б). Угол скрещивания осей чаще всего составляет 10 ... 15°. При шевинговании инструмент и заготовка воспроизводят зацепление винтовой пары. Кроме этого, зубчатое колесо перемещается возвратно-поступательно и после каждого двойного хода подается в радиальном направлении

На закаленных зубчатых колесах погрешности боковых поверхностей зубьев удаляют хонтгованием (если припуск на обработку не превышает 0,01 ... 0,03 мм на толщину зуба). Процесс хонингования заключается в совместной обкатке заготовки и абразивного инструмента, имеющего форму зубчатого колеса. Оси заготовки и инструмента скрещиваются под углом 15 ... 18°.Абразивные зерна хона обрабатывают боковые стороны зубьев заготовки (рис. 6.100, д).

Хонингуемые прямозубые или косозубые цилиндрические колеса вращаются в плотном зацеплении с хоном. Зубчатое колесо кроме вращения совершает возвратно-поступательное движение вдоль оси. Направление вращения пары изменяется при каждом двойном ходе.

При изготовлении хонов в качестве абразива используют карбид кремния или электрокорунд. Необходима лишь периодическая правка хона по его наружной поверхности, чтобы поддерживать требуемый зазор (рис. 6.100, д).

Значительные погрешности зубчатых колес, возникшие после термической обработки, исправляют методом зубо-шлифовании. Этот метод отделки обеспечивает получение высокой точности с малой шероховатостью поверхности зубьев и может быть использован при обработке цилиндрических и конических зубчатых колес.

Шлифование зубьев цилиндрических колес возможно копированием и обкаткой. Эвольвентный профиль зуба воспроизводится абразивными кругами, имеющими профиль впадин обрабатываемого колеса.

Для выполнения процесса шлифования методом обкатки осуществляют не только все движения указанной пары, находящейся в зацеплении, но и движения, необходимые для процесса резания. Движения резания и деления обеспечивает специальное устройство зубошлифовальных станков.

Результаты, получаемые при обработке зубчатых колес зубошлифованием, могут быть улучшены зубопритиркой. С ее помощью можно получать поверхности высокого качества, увеличивать плавность хода и долговечность работы зубчатой пары. Такой метод отделки применяют для закаленных зубчатых колес.

Притиры выполняют в виде зубчатых колес. В зацеплении в результате давления между зубьями притира и обрабатываемого колеса мелкозернистый абразив в смеси с маслом внедряется в более мягкую поверхность притира. При зубопритирке происходит искусственное изнашивание материала колеса в соответствии с профилем зуба притира.

В ходе обработки притир и колесо, находящиеся в зацеплении, совершают воз-

вратно-поступательное движение. Наибольшее распространение получили схемы обработки тремя притирами. Максимальный припуск, удаляемый притиркой, не должен превышать 0,05 мм.

ХОНИНГОВАНИЕ

Хонингование применяют для получения поверхностей высокой точности и малой шероховатости, а также для создания специфического микропрофиля обработанной поверхности в виде сетки. Такой профиль необходим для удержания смазочного материала при работе машины (например, двигателя внутреннего сгорания) на поверхности ее деталей.

Поверхность неподвижной заготовки обрабатывают мелкозернистыми абразивными брусками, которые закрепляют в хонинговальной головке (хоне). Бруски вращаются и одновременно перемещаются возвратно-поступательно вдоль оси обрабатываемого цилиндрического отверстия (рис. 6.94, а). Соотношение скоростей указанных движений составляет 1,5 ... 10 и определяет условия резания.

При сочетании движений на обрабатываемой поверхности появляется сетка микроскопических винтовых царапин - следов перемещения абразивных зерен. Угол 0 пересечения этих следов зависит от соотношения скоростей.

Абразивные бруски всегда контактируют с обрабатываемой поверхностью, так как могут раздвигаться в радиальных направлениях механическими, гидравлическими или пневматическими устройствами. Давление брусков должно контролироваться. Хонингованием исправляют погрешности формы от предыдущей обработки

в виде отклонений от круглости, цилиндричности и т.п., если общая толщина снимаемого слоя не превышает 0,01 ... 0,2 мм. Погрешности расположения оси отверстия (например, отклонения от прямолинейности) этим методом уменьшаются менее интенсивно, так как режущий инструмент самоустанавливается по отверстию.

Различают предварительное и чистовое хонингование. Предварительное хонингование используют для исправления погрешностей предыдущей обработки, а чистовое для получения малой шероховатости поверхности.

Хонинговальные бруски изготовляют из электрокорунда или карбида кремния, как правило, на керамической связке. Все шире применяют алмазное хонингование.

Хонингование проводят при обильном охлаждении зоны резания смазочно-охлаждающими жидкостями - керосином, смесью керосина (80 ... 90 %) и веретенного масла (10 ... 20 %), а также водно-мыльными эмульсиями.

Наибольшее распространение хонингование получило в автотракторной и авиационной промышленности. Система ЧПУ позволяет встроить процесс хонингования в гибкое производство (рис. 6.95).

5. ПРИТИРКА ПОВЕРХНОСТЕЙ

Поверхности деталей машин, обработанные на металлорежущих станках, всегда имеют отклонения от правильных геометрических форм и заданных размеров.

Эти отклонения могут быть устранены притиркой (абразивной доводкой). Таким методом могут быть обеспечены шероховатость поверхности до Кг = 0,05 ... 0,01 мкм, отклонения размеров и формы обработанных поверхностей до 0,05 ... 0,3 мкм. Доводка может быть осуществлена вручную и механическим способом.

По сравнению с ручной доводкой механическая абразивная доводка позволяет повысить производительность в 2 ... 6 раз, и при этом обеспечивается стабильность выходных - эксплуатационных характеристик деталей агрегатов и машин (гидравлической, пневматической и топливной аппаратуры, зубчатых колес, шариков и колец подшипников качения и др.), выходных параметров кремниевых подложек, кварцевых кристаллических элементов, керамических опор гидроприборов и др.

Доводка конических поверхностей осуществляется коническим притиром.

Процесс осуществляется с помощью притиров соответствующей геометрической формы. На притир наносят притирочную пасту или мелкий абразивный порошок со связующей жидкостью. Материал притиров должен быть, как правило, мягче обрабатываемого материала. Паста или порошок внедряется в поверхность притира и удерживается ею, но так, что при относительном движении каждое абразивное зерно может снимать весьма малую стружку. Поэтому притир можно рассматривать как очень точный абразивный инструмент.

Притир или заготовка должны совершать разнонаправленные движения. Наилучшие результаты дает процесс, в ходе которого траектории движения каждого зерна не повторяются. Процесс абразивной доводки является сложным процессом удаления припуска. Микронеровности сглаживаются за счет совокупного химико-механического воздействия на поверхность заготовки.

В качестве абразива для притирочной смеси используют порошок электрокорунда, карбидов кремния и бора, оксиды хрома и железа и др.

Материалами притиров являются серый чугун, бронза, красная медь, дерево. В качестве связующей жидкости используют машинное масло, керосин, стеарин, вазелин.

Рис. 6.93 А. Схемы взаимодействия заготовок с притирами 2, 4 через абразивную прослойку 3 при односторонней (а) и двусторонней (б) доводках незакрепленными и закрепленными зернами (в)

Физической основой абразивной доводки является абразивное разрушение материалов заготовок и притиров. Абразивные зерна при доводке самопроизвольно распределяются по поверхности притира и находятся либо в незакрепленном состоянии (в составе паст или суспензий), либо в поверхностном слое притира в закрепленном состоянии (в составе абразивного или алмазного круга).

Абразивные зерна в зависимости от степени их подвижности (закрепленности) работают по двум схемам: либо в условиях упругопластического деформирования или микрорезания при непрерывном контакте с поверхностными слоями заготовки. При доводке незакрепленными зернами доведенная поверхность приобретает кратерообраз-ный характер вследствие образования выколоток.

Для выполнения операций доводки применяют доводочные станки однодисковые или двухдисковые. Технологический процесс доводки, выбор режимов и условий процесса доводки приведены в справочной и специальной литературе.

72 . ХАРАКТЕРИСТИКА МЕТОДА ШЛИФОВАНИЯ Шлифованием называют процессы обработки заготовок резанием режущим инструментом, рабочая часть которого содержит частицы абразивного материала. Такой режущий инструмент называют абразивным. Измельченный абразивный материал (абразивные зерна), твердость которого превышает твердость обрабатываемого материала и который способен в измельченном состоянии осуществлять обработку резанием, называют шлифовальным. Различают алмазные, эльборовые, электрокорундовые, карбидкремниевые и другие абразивные инструменты (шлифовальные круги). Абразивные зерна расположены в круге беспорядочно и удерживаются связующим материалом. Шлифовальные крути срезают стружки на очень больших скоростях - от 30 м/с и выше (порядка 125 м/с). Процесс резания каждым зерном осуществляется почти мгновенно. Обработанная поверхность представляет собой совокупность микроследов абразивных зерен и имеет малую шероховатость.

Абразивные зерна могут также оказывать на заготовку существенное силовое воздействие. Происходит поверхностное пластическое деформирование материала, искажение его кристаллической решетки. Деформирующая сила вызывает сдвиг одного слоя атомов относительно другого. Вследствие упругопластического деформирования материала обработанная поверхность упрочняется.

Тепловое и силовое воздействия на обработанную поверхность приводят к структурным превращениям, изменениям физико-механических свойств. Проводят с подачей смазки.

Шлифование применяют для чистовой и отделочной обработки деталей с высокой точностью. Для заготовок из закаленных сталей шлифование является одним из наиболее распространенных методов формообразования. С развитием малоотходной технологии доля обработки металлическим инструментом будет уменьшаться, а абразивным - увеличиваться.

3. ОСНОВНЫЕ СХЕМЫ ШЛИФОВАНИЯ Формы деталей современных машин представляют собой сочетание наружных и внутренних плоских, круговых цилиндрических и круговых конических поверхностей. Другие поверхности встречаются реже. В соответствии с формами деталей машин наиболее распространены схемы шлифования, приведенные на рис. 6.79.

Для всех технологических способов шлифовальной обработки главным движением резания является вращение круга. При плоском шлифовании возвратно-поступательное перемещение заготовки необходимо для обеспечения продольной подачи (рис. 6.79, а). Для обработки поверхности на всю ширину заготовка или круг должны иметь движение поперечной подачи. Это движение происходит прерывисто (периодически) при крайних положениях заготовки в конце продольного хода. Периодически происходит и движение подачи на глубину резания. Это перемещение осуществляется также в крайних положениях заготовки, но в конце поперечного хода.

При круглом шлифовании (рис. 6.79, б) движение продольной подачи обеспечивается возвратно-поступательным перемещением заготовки. Вращение заготовки является движением круговой подачи.

В автоматизированных шлифовальных станках цикл работы станка включает периодический вывод круга из зоны шлифования, его автоматическую правку и перемещение круга к изделию на величину снятого при правке слоя абразива.

АБРАЗИВНЫЕ ИНСТРУМЕНТЫ

Абразивные инструменты различают по геометрической форме и размерам, роду и сорту абразивного материала, зернистости или размерам абразивных зерен, связке или виду связующего вещества, твердости, структуре или строению круга.

Зерна абразивных инструментов представляют собой искусственные или природные минералы и кристаллы. Абразивные материалы отличаются высокой твердостью, которая определяется по минералогической шкале. Зерна абразивов разделяют по крупности на группы и номера. Основная характеристика номера зернистости - количество и крупность его основной фракции. Вещество или совокупность веществ, применяемых для закрепления зерен шлифовального материала и наполнителя в абразивном инструменте, называют связкой. Наиболее широко применяют инструменты, изготовленные на керамической, бакелитовой или вулканитовой связке.

Керамическую связку приготовляют из глины," полевого шпата, кварца и других веществ путем их тонкого измельчения и смешения в определенных пропорциях. Бакелитовая связка состоит в основном из искусственной смолы - бакелита. Вулканитовая связка представляет собой искусственный каучук, подвергнутый вулканизации для превращения его в прочный, твердый эбонит. Под твердостью абразивного инструмента понимается способность связки сопротивляться вырыванию абразивных зерен с рабочей поверхности инструмента под действием внешних сил.

Для шлифования заготовок из твердых сплавов и высокотвердых материалов успешно применяют алмазные круги. Алмазный круг состоит из корпуса и алмазоносного слоя. Корпус изготовляют из алюминия, пластмасс или стали. Толщина алмазоносного слоя у большинства кругов составляет 1,5 ... 3 мм. Чаще всего для изготовления таких инструментов используют синтетические алмазы. Удельный вес их применения превышает 80 %. Созданы новые материалы, которые практически не требуют правки и сохраняют свои свойства при нагреве до 1200 °С.

На шлифовальные круги наносят обозначения, называемые маркировкой.

12. ТЕХНОЛОГИЧЕСКИЕ ТРЕБОВАНИЯ К КОНСТРУКЦИЯМ ОБРАБАТЫВАЕМЫХ ДЕТАЛЕЙ

Для шлифования ступенчатых валов (рис. 6.90, а) предусматривают центровые отверстия, а для шлифования пустотелых валов - установочные фаски. Между шейками вала и торцами из-за непрерывного осыпания зерен круга получается переходная поверхность. В тех случаях,

когда этого нельзя допустить по условиям работы детали, предусматривают технологические канавки для выхода шлифовального круга. Если необходимо оставить переходную поверхность, то на чертеже детали указывают ее максимально возможный радиус. Следует избегать конструирования валов с большой разностью диаметров отдельных участков. Точно обработанные, например, цилиндрические поверхности необходимо разделять введением проточек поверхности которых не требуется шлифовать.

Шлифование отверстий малых диаметров связано с трудностями и должно назначаться в исключительных случаях.

Плоские поверхности деталей должны быть расположены перпендикулярно или

параллельно (рис. 6.90, в,) основанию, на котором закрепляют заготовку. Шлифуемые поверхности желательно располагать в одной плоскости.

Назначение и основные типы сверл | | Конструктивные особенности твердосплавных сверл

ИНСТРУМЕНТЫ ДЛЯ ОБРАБОТКИ ОТВЕРСТИЙ

Конструктивные элементы спиральных сверл

Сверло - двухзубый режущий инструмент. Зуб сверла представляет собой тело клиновидной формы, ограниченное передней и задней поверхностью.

У спиральных сверл передняя поверхность, по которой сходит стружка при обработке, является винтовой поверхностью канавки (рис. 45).

Углом наклона винтовой канавки ОМЕГА называется угол, образуемый осью сверла и касательной к винтовой линии пересечения передней поверхности сверла с цилиндрической поверхностью, ось которой совпадает с осью сверла и диаметр которой равен диаметру сверла.

Поверхность зуба сверла, обращенная к поверхности резания (поверхности, по которой происходит отделение стружки от заготовки), называется задней поверхностью. Задние поверхности воспроизводятся при заточке сверла и их формы определяются принятым методом заточки. Задние поверхности на спиральных сверлах наиболее часто затачиваются по коническим, винтовым и плоским поверхностям. Линии пересечения передних и задних поверхностей сверла образуют режущую кромку. У обычных спиральных сверл прямолинейные режущие кромки и ось сверла являются скрещивающимися прямыми. Расстояние от оси сверла до режущей кромки равно половине диаметра сердцевины сверла. Угол 2ФИ между режущими кромками, которые располагаются симметрично относительно оси сверла, называют углом при вершине.

Линия пересечения задних поверхностей обоих зубьев сверла образует поперечную режущую кромку, расположенную в центральной зоне сверла.

Угол наклона поперечной кромки находится между проекциями поперечной кромки и режущей кромки на плоскость, перпендикулярную к оси сверла.

Задний угол АЛЬФА между задней поверхностью и поверхностью резания измеряется у сверл обычно в цилиндрическом сечении, концентричном оси сверла.

Угол при вершине сверла 2ФИ играет роль главного угла в плане. С увеличением угла при вершине сверла уменьшается активная длина режущей кромки и увеличивается толщина среза, что приводит к увеличению усилий, действующих на единицу длины режущих кромок, и способствует повышению интенсивности износа сверла.

Однако при увеличении угла 2ФИ сечение среза сохраняется неизменным и уменьшается степень деформации срезаемого слоя. При этом падает величина суммарной составляющей главного усилия резания, действующего по направлению скорости резания, и определяющего, величину крутящего моменту, что благоприятно воздействует на работу такого нежесткого инструмента, как спиральные сверла. Суммарное же осевое усилие подачи сверла при увеличении угла 2ФИ возрастает. Это объясняется изменением положения относительно оси сверла плоскости, нормальной к режущей кромке, в результате чего меньшая часть усилий, действующих на режущие кромки сверла, взаимно уравновешивается. Кроме того, передние углы на поперечной кромке с увеличением угла при вершине уменьшаются, это ухудшает внедрение этой кромки в материал заготовки и приводит к возрастанию осевых усилий при сверлении. В результате возрастает опасность появления продольного изгиба сверла и значительных его деформаций. Опыты показывают, что при уменьшении угла 2ФИ от 140 до 90° осевое усилие подачи снижается на 40-50%, а крутящий момент увеличивается на 25-30%.

С увеличением угла при вершине уменьшается угол между режущей кромкой и кромкой ленточки, что приводит к ухудшению теплоотвода от наиболее интенсивно изнашивающейся периферийной зоны сверла.

При сравнительно небольших подачах, используемых в процессе сверления, уменьшение угла при вершине 2ФИ может привести к чрезвычайно малым значениям толщин среза, соизмеримым с радиусом округления режущей кромки. Это приводит к неустойчивым результатам и чаще всего к понижению стойкости инструмента.

Угол при вершине 2ФИ спирального сверла влияет на величины передних углов и на изменение их на режущей части, а также на направление и условия отвода стружки по винтовым канавкам. Известно, что нормальная работа сверла может иметь место тогда, когда надежно обеспечивается вывод стружки по канавкам и не наблюдается ее защемление и пакетирование. Как показывают исследования, увеличение угла при вершине 2ФИ приводит к более плавному изменению передних углов вдоль режущей кромки, что благоприятно отражается на режущей способности сверл.

Таким образом, угол при вершине сверла 2ФИ весьма противоречиво воздействует на процесс сверления и его оптимальное значение, зависит от многих факторов, предопределяющих характер работы сверла. Поэтому в литературе можно встретить различные данные и рекомендации по выбору угла при вершине сверла.

Следует учитывать, что подобно резцам с различными углами в плане, можно применять для заданных условий работки сверла с различными углами при вершине 2ФИ и достигать при атом удовлетворительных результатов.

Базируясь на экспериментальные данные и производственный опыт, угол 2ФИ при вершине сверла ориентировочно можно выбирать в зависимости от обрабатываемого материала.

Угол ОМЕГА наклона винтовой канавки измеряется на наружном диаметре сверла. При известном шаге h винтовой канавки и диаметре сверла Д угол наклона ОМЕГА определяется по формуле:

Винтовые линии пересечения винтовой канавки сверла с цилиндрическими поверхностями, концентричными оси сверла, имеют переменный угол наклона (ОМЕГА х) определяемый по соотношению:

Где R - радиус сверла;

Rx-радиус рассматриваемого цилиндрического сечения, концентричного оси сверла или, иными словами, расстояние от рассматриваемой точки режущей кромки до оси сверла. Как видно, угол наклона винтовых линий, расположённых на передней поверхности канавки сверла, уменьшается при приближении к оси сверла. Величины углов ОМЕГА для различных точек режущих кромок сверла при изменении угла наклона винтовой канавки от 15 до 60° приведены в табл. 5.

Из таблицы видно, что изменение угла наклона винтовой канавки ОМЕГА сильно влияет на величины углов ОМЕГА х на периферии.

Таблица 5. Изменение угла ОМЕГА х, град, на режущей части сверла
У сердцевины же сверла изменение угла ОМЕГА вызывает небольшие изменения углов ОМЕГА х, т. е. за счет изменения угла ОМЕГА нельзя в большой степени влиять на изменения геометрии центральной зоны сверла. Угол наклона винтовой канавки предопределяет величины передних углов на режущей части, особенно на периферии сверла. С увеличением угла ОМЕГА передний угол в исследуемой точке кромки также возрастает. Это приводит к уменьшению усилий резания, способствует лучшему отводу стружки.

При построении известны шаг винтовой канавки, диаметр сердцевины, ширина канавки, форма и расположение режущей кромки сверла. На рис. 53 рассмотрено сверло с прямолинейной режущей кромкой, составляющей с осью угол ФИ. Построение выполняется в системе плоскостей проекций V/H. Плоскость H перпендикулярна оси сверла, а плоскость V параллельна режущей кромке АВ (ее проекции а"b" и ab). Через периферийную точку А режущей кромки проведено сечение I, перпендикулярное оси сверла, линия пересечения которого с винтовой поверхностью канавки будет искомым торцовым сечением канавки сверла. Чтобы отыскать произвольную точку торцового сечения канавки сверла, на его режущей кромке выберем произвольную точку С. Эта точка при винтовом движении режущей кромки АВ опишет в пространстве винтовую линию СС1, расположенную на поверхности канавки. Винтовая линия СС1 пересекает сечение / в точке С1, которая будет точкой торцового сечения сверла. Винтовое движение кромки АВ, а, следовательно, и рассматриваемой точки С, разложим на поступательное движение вдоль оси сверла и кинематически связанное с ним вращательное движение вокруг оси сверла. Если обозначить величину поступательного перемещения вдоль оси через х, то соответствующий этому перемещению угол поворота будет равен:

Где H - шаг винтовой канавки сверла.

Точка С за время перемещения на величину h вдоль оси сверла до сечения I повернется вокруг оси сверла на угол

Этот угол между радиусами, соединяющими горизонтальные проекции точек С1 и С с центром сверла в истинную величину изображается в проекции на плоскости H. Поэтому, повернув вокруг оси сверла точку С на угол ЭПСЕЛОН найдем искомую горизонтальную проекцию C1 точки торцового сечения канавки сверла.

Аналогично точке С, рассматривая последующие точки режущей кромки, определяются соответствующие им точки торцового сечения канавки, совокупность которых и будет профилем рабочего участка винтовой канавки сверла в сечении, перпендикулярном его оси.

Для облегчения построения на режущей кромке целесообразно выбирать ряд равноудаленных точек С, Е, К, отстоящих от сечения / на расстоянии h, 2h, 3h. Тогда углы поворота горизонтальных проекций этих точек вокруг оси сверла будут соответственно равны ЭПСЕЛОН h, 2ЭПСЕЛОН h, З ЭПСЕЛОН h. Повернув горизонтальные проекции точек с, е, к вокруг оси сверла на углы ЭПСЕЛОН h, 2ЭПСЕЛОН h, З ЭПСЕЛОН h получим искомые точки c1, e1, k1 торцового сечения канавки сверла. Полученную кривую можно заменить дугой окружности радиуса R1 с центром в точке О1.

Вспомогательная часть профиля канавки сверла выбирается таким образом, чтобы обеспечить получение заданной ширины канавки, т. е. угла ТАУ, плавного сопряжения кривых профиля. Это способствует предотвращению трещин при термообработке сверла. Построив угол ТАУ, найдем вторую крайнюю точку m расположенную на вспомогательной части профиля. Примем, что вспомогательная часть профиля очерчивается по дуге окружности радиуса R2. Чтобы эта окружность касалась сердцевины сверла и окружности R1 в точке их соприкосновения t ее центр O2 должен лежать на прямой ОО2. С другой стороны, чтобы окружность R2 проходила через точки t, т ее центр O2 должен лежать на перпендикуляре к отрезку mt, проведенному через его середину. Поэтому точка пересечения рассматриваемого перпендикуляра и прямой O1О будет центром O2 второй окружности профиля канавки, радиус которой R3 = О2t = О2m.

Рассмотрение найденного профиля торцового сечения сверла показывает, что вспомогательный участок профиля сверла заканчивается в точке т острым углом.

Некоторые исследователи, изучая прочность сверл, пришли к выводу, что материал сверла в рассматриваемых углах практически не включается в работу и их необходимо округлять, что способствует лучшему использованию материала сверла, снижает концентрацию напряжений и повышает сопротивление кручению.

Для уменьшения трения сверла о поверхность отверстия на его зубьях по всей длине срезается спинка с оставлением небольшой шлифованной ленточки. Ленточка служит для направления сверла в процессе работы. На величине приблизительно равной половине подачи кромка ленточки, примыкающая к главным режущим кромкам, выполняет роль вспомогательной кромки и формирует поверхность отверстия. На этом участке направляющая ленточка служит вспомогательной задней поверхностью с задними углами, равными нулю.

Ширина направляющей ленточки оказывает значительное влияние на работу сверла. С увеличением ширины ленточки улучшается направление сверла, что благоприятно сказывается на его работе. Однако в этом случае возрастает трение их о стенки отверстия, что увеличивает интенсивность износа сверл и понижает их стойкость.

Опыты показывают, что с повышением жесткости сверл, например за счет роста диаметра сердцевины, увеличение ширины ленточки существенно не влияет на виброустойчивость и направление сверла в отверстии. В этом случае можно выбирать небольшие значения ширины направляющей ленточки. Однако при чрезмерно малых величинах ширины ленточки, особенно при обработке труднообрабатываемых материалов, прочность направляющих ленточек в зоне резания настолько снижается, что происходит их быстрое разрушение, увеличивается зона трения и стойкость инструмента снижается.

Стандартные сверла универсального назначения диаметром 0,25-0,5 мм имеют полностью шлифованную спинку, т. е. у них ширина ленточки равна ширине зуба. У сверл диаметром от 1 до 50 мм ширина ленточек колеблется от 0,2 /ш до 2 мм.

С целью увеличения точности обработки отверстий применяют сверла с четырьмя ленточками по две на каждом зубе. У таких сверл ширина дополнительной ленточки берется на 30-40% меньше ширины основной ленточки.

Для уменьшения трения ленточек о стенки отверстия диаметр сверла уменьшают по направлению к хвостовику, т. е. выполняют сверла с обратной конусностью. Опыты показывают, что с увеличением обратной конусности стойкость сверл первоначально возрастает, а затем, достигнув максимального значения, снижается. Это происходит в результате уменьшения трения сверла о стенки отверстия. Дальнейшее увеличение об¬ратной конусности не влияет на трепне сверла о стенки отверстия, а ослабляет режущие кромки на периферии сверла, что способствует возрастанию интенсивности износа. Обратная конусность вли¬яет на направление сверла, т. е. на жест¬кость и виброустойчивость системы, что особо важно для сверл малого диаметра. У них, как показывают опыты, целесообразно выбирать уменьшенные значения обратной конусности. Степень влияния обратной конусности зависит от величины других параметров, влияющих на жесткость сверла. Поэтому у сверл с утолщенной сердцевиной можно выбирать увеличенные величины обратной конусности.

Для стандартных сверл универсального назначения на 100 мм длины:

Указанные величины обратной конусности можно принимать и при проектировании специальных сверл.

Для сверления отверстий под штифты конусностью 1:50 применяют конические сверла (рис. 54).

Кромка ленточки таких сверл имеет прямую конусность, соответствующую конусности просверленного отверстия, выполняет роль режущей кромки и формирует коническую поверхность отверстия. Поэтому у конических сверл, на ленточках по всей их длине затачивается задний угол величиной 8-18°, подтачивается поверхность винтовой канавки и создается передний угол. На ленточках в шахматном порядке выбираются стружкоразделительные канавки с шагом 8-12 мм.

Длина рабочей части сверла существенно влияет на его устойчивость в процессе сверления и стойкость. Исследования показывают, что с увеличением в определенных пределах длины сверла стойкость его уменьшается примерно по закону прямой, после чего наблюдается резкое падение стойкости. Влияние длины сверла на его стойкость особенно заметно на сверлах малого диаметра, у которых соотношение длины рабочей части к диаметру достигает величины 15- 20, а также при сверлении труднообрабатываемых материалов. При сверлении конструкционных сталей и чугунов стойкость при увеличении длины вылета сверла снижается в меньшей мере. Очевидно резкое уменьшение стойкости соответствует критическому значению допустимой нагрузки, возникающей в результате действия осевого усилия и крутящего момента на устойчивость сверла.

Известно, что величины усилий резания, действующих на сверло , зависят от принятых режимов резания. Поэтому необходимо при выборе режимов сверления учитывать длину вылета сверла и соответственно уменьшать скорость и подачу при возрастании длины вылета сверла. При сверлении труднообрабатываемых материалов усилия резания имеют увеличенные значения и соответственно этому уменьшаются возможные допустимые величины вылета сверла.

С точки зрения стойкости во всех случаях целесообразно применять сверла с минимально возможной длиной вылета. Следует учитывать, что при большом выходе из строя сверл за счет их поломок уменьшение длины вылета сверла повышает стойкость и работоспособность инструмента.

Для установки и закрепления в шпинделе станка спиральные сверла наиболее часто имеют цилиндрический или конический хвостовик. Цилиндрический хвостовик наиболее прост в изготовлении, сверла с цилиндрическим хвостовиком могут устанавливаться в шпиндель сверильного станка с помощью разрезной конической переходной втулки с цилиндрическим центральным отверстием. При установке такой втулки в шпиндель станка она сжимается и плотно охватывает хвостовик инструмента. Используются также специальные цанговые или кулачковые патроны.

Закрепление сверла и передача крутящего момента осуществляется в этом случае за счет трения цилиндрической поверхности хвостовика и соприкасающихся с ней элементов патрона. При повышенных скоростях резания, во избежание проворачивания сверла в патроне во время сверления, применяют сверла с поводком, выполненным в виде двух плоскостей (лысок). Из-за недостаточной силы зажима цилиндрический хвостовик применяется только для сверл диаметром до 20-25 мм.

Наибольшее распространение получили сверла с коническим хвостовиком, устанавливаемые в коническое отверстие шпинделя станка. Если размеры конического хвостовика меньше чем у отверстия шпинделя, используются переходные втулки. Конический хвостовик сверла заканчивается лапкой, которая предназначается только для облегчения выталкивания инструмента из шпинделя клином и не должна воспринимать усилия резания, возникающего при сверлении.

В наличии на складе!
Защита от излучения при сварке и резке. Большой выбор.
Доставка по всей России!

Сверление, зенкерование и развертывание являются основными технологическими способами обработки резанием круглых отверстий различной степени точности и с различной шероховатостью обработанной поверхности. Все перечисленные способы относятся к осевой обработке, т.е. к лезвийной обработке с вращательным главным движением резания при постоянном радиусе его траектории и движении подачи только вдоль оси главного движения резания.

Сверление - основной способ обработки отверстий в сплошном материале заготовок. Просверленные отверстия, как правило, не имеют абсолютно правильной цилиндрической формы. Их поперечное сечение имеет форму овала, а продольное - небольшую конусность.

Диаметры просверленных отверстий всегда больше диаметра сверла, которым они обработаны. Разность диаметров сверла и просверленного им отверстия называют разбивкой отверстия. Для стандартных сверл диаметром 10...20 мм разбивка составляет 0,15...0,25 мм. Причиной разбивки отверстий являются недостаточная точность заточки сверл и несоосность сверла и шпинделя сверлильного станка.

Сверление отверстий без дальнейшей их обработки проводят тогда, когда необходимая точность размеров лежит в пределах 12... 14-го квалитетов. Наиболее часто сверлением обрабатывают отверстия для болтовых соединений, а также отверстия для нарезания в них внутренней крепежной резьбы (например, метчиком).

Зенкерование - это обработка предварительно просверленных отверстий или отверстий, изготовленных литьем и штамповкой, с целью получения более точных по форме и диаметру, чем при сверлении. Точность обработки цилиндрического отверстия после зенкерования - 10... 11-й квалитеты.

Развертывание - это завершающая обработка просверленных и зенкерованных отверстий для получения точных по форме и диаметру цилиндрических отверстий (6...9-й квалитеты) с малой шероховатостью Ra 0,32... 1,25 мкм.

Сверла предназначаются для сверления сквозных или глухих отверстий в деталях, обрабатываемых на сверлильных, токарно-револьверных и некоторых других станках. В зависимости от конструкции и назначения различают следующие сверла:


Рис. 2.22. Спиральные сверла:
а и б - элементы спирального сверла соответственно с коническим и цилиндрическим хвостовиками; в - кромки и поверхности спирального сверла; 1 - рабочая часть; 2 - шейка; 3 - хвостовик; 4 - лапка; 5 - режущая часть; 6 - поводок; 7 - зуб; 8 - винтовая канавка; 9 - поперечная кромка; 10 - кромка ленточки; 11 - спинка зуба


Рис. 2.23. Углы спирального сверла:
α - задний угол; γ - передний угол; Ψ - угол наклона поперечной режущей кромки; ω - угол наклона винтовой канавки; 2φ - угол при вершине; 1 - задняя поверхность; 2 - передняя поверхность; 3 - режущая кромка



Рис. 2.24. Формы заточки спиральных сверл:
а - обыкновенная; б - двойная: 1 - главная режущая кромка; 2 - поперечная режущая кромка; 3 - вспомогательная режущая кромка; 2φ - главный угол при вершине сверла; 2φ 0 - вспомогательный угол при вершине сверла; Z 0 - ширина зоны второй заточки; в - подточка поперечного лезвия и ленточки; г - подточка ленточки: f - ширина ленточки

  • спиральные с цилиндрическим и коническим хвостовиками, предназначенные для сверления стали, чугуна и других конструкционных материалов;
  • оснащенные пластинками из твердых сплавов, предназначенные для обработки деталей из чугуна (особенно с литейной коркой) и очень твердой и закаленной стали;
  • глубокого сверления (одно- и двустороннего резания), используемые при сверлении отверстий, длина которых превышает диаметр в пять раз и более;
  • центровочный инструмент (центровочные сверла и зенковки), предназначенный для обработки центровых отверстий обрабатываемых деталей.

Спиральное сверло и элементы его рабочей части приведены на рис. 2.22.

Углы и формы заточки спирального сверла показаны на рис. 2.23 и 2.24. Формы заточек сверл выбирают в зависимости от свойств обрабатываемых материалов и диаметра сверла.

Для повышения стойкости сверла и производительности обработки производят двойную заточку сверла под углами 2φ = 116...118° и 2φ 0 = 70...90° (рис. 2.24, б).Подточка поперечной кромки (рис. 2.24, в) и ленточки сверла (рис. 2.24, г) облегчает процесс сверления отверстий. Подточка поперечной кромки снижает осевую силу, а подточка ленточки уменьшает трение ленточек о стенки отверстия и повышает стойкость сверл.

При подточке длина поперечной кромки уменьшается до 50 %. Обычно производится подточка сверл диаметром более 12 мм, а также после каждой переточки сверла.

В зависимости от обрабатываемого материала углы при вершине сверл выбирают по табл. 2.10, а задние и передние углы - по табл. 2.11.

Для сверления заготовок из чугуна и цветных металлов применяют твердосплавные сверла. Эти сверла из-за нестабильности работы редко применяют при сверлении заготовок из сталей.

Сверла диаметром от 5 до 30 мм оснащают пластинами или коронками из твердого сплава. Недостатками конструкции сверл с припаиваемой пластиной из твердого сплава являются ослабление корпуса инструмента и расположение места, где припаивается пластина, в зоне резания, т. е. в зоне высоких температур. Сверла с припаянными встык коронками из твердого сплава лишены этих недостатков.

Таблица 2.10. Углы при вершине сверла


Таблица 2.11. Задние и передние углы сверла



Примечания. 1. Задние углы даны для точек режущей кромки, расположенных на наибольшем диаметре сверла d max .
2. При расчете угла γ принимают d r = d max .

Для успешной работы твердосплавных сверл необходимо обеспечить их повышенную прочность и жесткость по сравнению со сверлами из быстрорежущей стали, это достигается увеличением сердцевины до 0,25 диаметра сверла.

Зенкеры предназначены для обработки литых, штампованных и предварительно просверленных цилиндрических отверстий с целью улучшения чистоты поверхности и повышения их точности или для подготовки их к дальнейшему развертыванию.

Зенкеры применяют для окончательной обработки отверстий с допуском по 11... 12-му квалитетам и обеспечивают параметр шероховатости Rz 20...40 мкм.

Конструктивно зенкеры выполняют хвостовыми цельными, хвостовыми сборными с вставными ножами, насадными цельными и насадными сборными. Зенкеры изготовляют из быстрорежущей стали или с пластинами твердого сплава, напаиваемыми на корпус зенкера или корпус ножей у сборных конструкций. Хвостовые зенкеры (подобно сверлам) крепят с помощью цилиндрических или конических хвостовиков, насадные зенкеры имеют коническое посадочное отверстие (конусность 1:30) и торцовую шпонку для предохранения от провертывания при работе.

Зенкер (рис. 2.25, а) состоит из рабочей части l, шейки l 3 , хвостовика l 4 и лапки е. Рабочая часть зенкера имеет режущую l 1 и калибрующую l 2 части.

Зенкеры имеют три, четыре, а иногда шесть режущих зубьев, что способствует лучшему по сравнению со сверлами направлению их в обрабатываемом отверстии и повышает точность обработки.


Рис. 2.25. Зенкер:
а - элементы зенкера: l - рабочая часть; l 1 - режущая часть; l 2 - калибрующая часть; l 3 - шейка; l 4 - хвостовик; е - лапка; б - режущая часть зенкера: α - задний угол; γ - передний угол; φ - угол главной режущей кромки; ω - угол наклона канавки зенкера; t - глубина резания; b - режущая кромка: φ 1 - угол вспомогательной режущей кромки

Зенкеры из быстрорежущей стали изготовляют хвостовыми цельными диаметром 10...40 мм, хвостовыми сборными с вставными ножами диаметром 32...80 мм или насадными сборными диаметром 40... 120 мм.

Зенкеры, оснащенные твердосплавными пластинами, могут быть составными и сборными. Составные хвостовые зенкеры имеют диаметры 14...50 мм, насадные - 32...80 мм, насадные сборные - 40... 120 мм.

Таблица 2.12. Передние углы зенкеров



Угол наклона винтовой канавки (рис. 2.25, б) зенкеров общего назначения ω = 10...30°. Для обработки твердых металлов берут меньшие, а для мягких - большие значения углов. Для чугуна угол ω= 0°. Для отверстий с прерывистыми стенками независимо от свойств обрабатываемого металла ω= 20...30°. Передний угол зенкеров у выбирают по табл. 2.12. Задний угол α зенкера на периферии равен 8... 10°. Угол при вершине φ выбирают по табл. 2.13.

Таблица 2.13. Угол режущей части (заборного конуса) зенкера


Угол наклона винтовой канавки ω зенкера при обработке деталей из стали, чугуна и бронзы равен 0°. Для усиления режущей кромки на зенкерах с пластинками из твердых сплавов со выбирают положительным и равным 12... 15°.

Ленточки вдоль края винтовой канавки на калибрующей части служат для направления зенкера. Ширина ленточки f= 0,8... 2,0 мм. Для повышения стойкости зенкера длину ленточки подтачивают на 1,5...2 мм (так же, как у сверла).

Развертка - осевой режущий инструмент - предназначена для предварительной и окончательной обработки отверстий с точностью, соответствующей 6... 11-му квалитетам, и шероховатостью поверхности Ra 2,5 ...0,32 мкм.

Основные элементы развертки даны на рис. 2.26, а. Развертки подразделяются:

  • по типу обрабатываемых поверхностей - на цилиндрические и конические;
  • способу применения - на ручные и машинные;
  • методу крепления на станке - на хвостовые и насадные;
  • инструментальному материалу режущей части - на быстрорежущие и оснащенные твердым сплавом;
  • конструктивным признакам - на цельные, изготовленные из одного инструментального материала; составные неразъемные со сварными хвостовиками; составные неразъемные с припаянными пластинками из твердого сплава и составные разъемные с вставными ножами.

Конструкция регулируемых разверток позволяет восстанавливать их диаметр при переточках, что увеличивает срок работы инструмента.

Стандартные развертки имеют прямые канавки, т.е. угол наклона канавок ω = 0°. Для уменьшения шероховатости обработанной поверхности, а также для развертывания отверстий с пазами применяют развертки с винтовыми канавками, имеющими наклон, обратный направлению рабочего вращения. Для разверток с винтовыми канавками угол ω приведен в табл 2.14.

Таблица 2.14. Угол наклона ω для разверток с винтовыми канавками



Угол конуса заборной части φ развертки (рис. 2.26, б) выбирают по табл. 2.15.

Таблица 2.15. Угол конуса заборной части разверток



Задний угол α (рис. 2.26, в) берется равным 15°, большие величины а принимают для разверток малых размеров. Задний угол на калибрующей части равен 0°.


Рис. 2.26. Развертка:
а - элементы развертки: t 1 - рабочая часть; t 2 - режущая часть; t 3 - калибрующая часть; t 4 - шейка; t 5 - хвостовик; е - квадрат; 1 - направляющий конус; 2 - цилиндрическая часть; 2φ - угол заборного конуса; б - элементы режущей части развертки: 1 - 2 - поверхность направляющего конуса; 2 - 3 - режущая часть; φ - угол главной режущей кромки; в - зубья развертки в поперечном сечении: 1 - режущая часть; 2 - калибрующая часть; 3 - ленточка; 4 - угол спинки; α - задний угол; γ - передний угол; г - элементы резания разверткой и обозначение поверхностей на обрабатываемой детали: t - глубина резания; а - толщина стружки; b - ширина стружки; S 0 - подача на оборот; d - диаметр развернутой поверхности; 1 - развернутая поверхность; 2 - поверхность резания; 3 - развертываемая поверхность

Для чистовых разверток при резании хрупких металлов передний угол γ равен 0° (см. рис. 2.26, в), для черновых - γ = 8°, у котельных разверток γ= 12... 15°, у разверток с пластинами из твердых сплавов γ берется от 0 до -5°.

Метчики предназначены для образования резьбы в отверстиях. Рассмотрим метчики, образующие профиль резьбы путем снятия стружки и установленные на сверлильных, токарно-револьверных и других станках. Конструктивные элементы и профиль резьбы метчика показаны на рис. 2.27.



Рис. 2.27. Конструктивные элементы и профиль резьбы метчика:
а - основные части: l 1 - режущая часть; l 2 - направляющая часть; l - рабочая часть; 1 - центровые отверстия; 2 - канавки; 3 - сердцевина; 4 - зуб; 2φ - угол конуса режущей части; φ - угол конуса; б - профиль резьбы: 1 - вершина резьбы; 2 - профиль резьбы; 3 - основание резьбы; Р - шаг резьбы; ψ - угол резьбы; t - глубина резьбы; d 1 - внутренний диаметр; d ср - средний диаметр; d 0 - наружный диаметр; d 2 - диаметр сердцевины; φ - угол конуса

Стружечные канавки, пересекая резьбовые витки, образуют зубья метчика; каждый зуб представляет собой многониточный резьбовой резец. Резцы режущей части имеют главные кромки, которые располагаются на конусе, и вспомогательные кромки, которые являются частью резьбового профиля.

Число резцов z 1 режущей части определяется по формуле

где l 1 - длина режущей части, мм; z - число зубьев метчика; Р - шаг резьбы, мм.

Направляющая часть l 2 в резании не участвует, а служит для самоподачи (ввинчивания) метчика и является резервом при переточках.

Для уменьшения трения и устранения защемления резьбовых витков на направляющей части метчика резьбу выполняют с обратной конусностью, т.е. диаметры d, d ср и d 1 измеренные у хвостовика, на 0,02...0,005 мм меньше одноименных диаметров на режущей части (рис. 2.27, б). Для облегчения входа метчика в отверстие под резьбу диаметр d 2 переднего торца метчика на 0,1... 0,3 мм меньше внутреннего диаметра резьбы d 1

Величину угла в плане φ рассчитывают по формуле

tgφ = (d - d 1)/(2l 1).

Углы зубьев режущей l 1 и направляющей l 2 частей метчика (см. рис. 2.27, а) показаны на рис. 2.28. По способу получения задних поверхностей метчики относятся к затылованному инструменту.


Рис. 2.28. Углы зубьев режущей и направляющей частей метчика:
1 - направляющая часть; 2 - режущая часть; γ - передний угол; η - задний угол; α - задний угол; К - величина падения затылка

Задний угол а режущей части измеряют в плоскости, перпендикулярной оси вращения метчика, между касательными к окружности и задней поверхности.

Метчики из быстрорежущей стали изготовляют со шлифованным профилем резьбы, метчики из углеродистой стали делают без шлифования профиля резьбы.

Передние углы режущей и направляющей частей измеряют в плоскости, перпендикулярной оси вращения метчика между касательной к передней поверхности и прямой, проходящей через ось вращения и рассматриваемую точку кромки метчика.

Б.И. Черпаков, Т.А. Альперович. "Металлорежущие станки".

Сверло состоит из рабочей части 1 , шейки 3 , хвостовика 4 илапки5 предназначенной для обеспечения удаления сверла из шпинделя (рис. 2.4). Конический или цилиндрический хвостовик 4 служит для закрепления сверла на станке. Шейка сверла – промежуточная часть между хвостовиком и рабочей частью сверла. В связи с особенностями технологии изготовления сверла, шейка имеет меньший диаметр, чем рабочая часть. Последняя состоит из режущей 2 и направляющей части 16 и имеет две винтовые стружечные канавки 9 , по которым транспортируется стружка из обрабатываемого отверстия.

Рис. 2.4. Части и элементы спирального сверла:

1 – рабочая часть; 2 – режущая часть; 3 – шейка; 4 – хвостовик; 5 – лапка; 6 – зуб; 7 – поперечная кромка; 8 – поводок; 9 – стружечная канавка; 10 – главная задняя поверхность; 11 – главные режущие кромки; 12 – ленточка (вспомогательная задняя поверхность); 13 – кромка ленточки (вспомогательная режущая кромка); 14 – передняя поверхность; 15 – спинка зуба; 16 – направляющая часть.

Винтовые стружечные канавки 9 разделяют рабочую часть сверла на два зуба (пера). Так как перья сверла должны быть соединены, то между ними вдоль оси сверла имеется сердцевина. Ее размер соответствует окружности, касательной к поверхности канавок. Направляющая часть обеспечивает движение сверла в обрабатываемом отверстии и служит резервом для образования режущей части при переточках сверла. Направляющая часть сверла для уменьшения трения соприкасается с отверстием только по отшлифованным винтовым ленточкам 12 , которые расположены по краю винтовой стружечной канавки. Остальная часть зуба сверла имеет меньший диаметр и с обработанным отверстием не соприкасается. Ленточка шлифуется по окружности.

На поверхности винтовых стружечных канавок образуется и транспортируется стружка, т.е. они являются передними поверхностями 14 сверла.

Торец сверла на режущей части затачивают, образуя главные задние поверхности 10 , обращенные в процессе обработки к поверхности резания. Задние поверхности могут быть оформлены частью конической, линейчатой, эвольвентой, винтовой, плоской и другими поверхностями. Вспомогательными задними поверхностями являются наружные поверхности круглошлифованных ленточек 12 . Это часть конической поверхности с очень малой конусностью, ось которой совпадает с осью сверла. Передние поверхности 14 винтовых канавок, пересекаясь с главными задними поверхностями 10 , образуют главные режущие кромки 11 , а пересекаясь со вспомогательными задними поверхностями (ленточками 12 ) – вспомогательные режущие кромки 13 . Так как в сверле имеется сердцевина, то при пересечении двух главных задних поверхностей 10 образуется поперечная кромка или перемычка 7 (рис. 2.4).

Одним из главных конструктивных элементов сверла является наружный диаметр D - δ , имеющий минусовой допуск, что связано с разбивкой при сверлении отверстия. Допуск δ= -0,015…-0,074 принимается в зависимости от диаметра сверла D =1…80мм.

Сверла применяются при обработке отверстий в сплошном материале. По конструкции различаются спиральные, центровочные, перовые, ружейные с наружным или внутренним отводом стружки и кольцевые (трепанирующие головки) сверла. Сверла изготавливаются из быстрорежущей стали марок Р18, Р12, Р9, Р6АМ5, Р6АМ5ФЗ, Р6П5К5 и Р9М4К8. Возможно оснащение режущей части сверла пластинами твердого сплава марок ВК6, ВК6М, ВК8, ВК10М, ВК15М, что позволяет использовать их при обработке материалов на высоких скоростях резания, а также при обработке материалов высокой твердости, например легированных конструкционных сталей.

Виды сверл

Спиральные сверла (рис. 3.26) состоят из трех частей: рабочей части, хвостовика и шейки. Рабочая часть сверла образована двумя спиральными канавками и включает в себя режущую и цилиндрическую (направляющую) части с двумя ленточками, что уменьшает трение сверла о поверхность обрабатываемого отверстия. Режущей частью сверла является его вершина, образующая при заточке сверла два зуба с режущими кромками. Режущие кромки сверла выполняют основную работу резания.

Спиральные сверла выпускают с хвостовой частью (хвостовиком) двух типов — цилиндрические и конические. Цилиндрические хвостовики применяются для сверл диаметром до 20 мм, а конические — для сверл диаметром от 5 мм.

Конический хвостовик сверла имеет лапку, служащую для установки сверла в шпинделе станка или переходной втулке. Крутящий момент от шпинделя станка сверлу передается за счет сил трения между поверхностями конического хвостовика и втулки или отверстия шпинделя станка. Лапка на конце конического хвостовика облегчает удаление (выбивание) сверла из переходной втулки или шпинделя станка. Сверла с цилиндрическими хвостовиками закрепляются в станке или сверлильном приспособлении, механизированном инструменте при помощи специальных сверлильных патронов.

Конструктивные особенности и специфика работы сверла обусловливают непостоянство геометрических параметров заточки их рабочей части. Так, главный задний угол а у стандартного сверла возрастает по мере приближения к центру. На периферии сверла этот угол составляет 8… 14°, а около поперечной режущей кромки уже 26… 35°. На периферии передний угол у = 18… 33°, а около поперечной режущей кромки у = 0 0 или имеет отрицательное значение.

Угол при вершине сверла 2<р выбирают в зависимости от свойств обрабатываемого материала. У стандартных сверл величина этого угла колеблется в пределах 116… 118°. В зависимости от обрабатываемого материала величина угла при вершине выбирается в следующих пределах:

Для стали углеродистой конструкционной — 116… 120°;

Для коррозионно-стойкой стали — 125… 130°;

Для стали высокой прочности — 125… 130°;

Для жаропрочных сплавов — 125… 130°;

Для титановых сплавов — 140°;

Для чугуна средней твердости — 90… 100

Для чугуна твердого — 120… 125°;

Для твердой бронзы — 90… 100

Для латуни, алюминиевых сплавов, баббита — 130… 140°;

Для меди — 125°;

Для пластмасс - 80… 110°;

Для мрамора — 80… 90

Угол наклона поперечной режущей кромки |/ составляет 50… 55 а угол наклона винтовой канавки к оси отверстия со — 23… …27°.

Принята единая градация диаметров сверл, которая охватывает сверла диаметром до 80 мм. Сверла диаметром от 1 до 3 мм имеют градацию через каждые 0,05 мм; диаметром от 3 до 13,7 мм — через 0,1 мм; диаметром от 13,75 до 49,5 — через 0,5; 0,1; 0,15; 0,25; сверла диаметром 52… 80 мм имеют градацию через 1 мм.

Центровочные сверла (рис. 3.27) предназначены для выполнения центровых отверстий, их изготовляют из быстрорежущих инструментальных сталей марок Р9 и Р12. По конструкции различают центровые сверла без предохранительного конуса (рис. 3.27, а) и с предохранительным конусом (рис. 3.27, б).

Перовые сверла (рис. 3.28) имеют плоскую рабочую часть и прямые канавки для отвода стружки. Рабочую часть таких сверл (перо) часто выполняют так, чтобы ее можно было заменить. Отсутствие спиральной части упрощает изготовление перовых сверл и повышает их жесткость в осевом направлении, однако затрудняет отвод стружки из зоны резания. На режущей части перового сверла выполняются стружкоразделительные канавки. Угол при вершине, задний угол, ширину калибрующей ленточки и некоторые другие параметры перовых сверл выбираются в зависимости от условий обработки отверстий по аналогии с параметрами спиральных сверл.

Ружейные сверла (рис. 3.29) применяются для сверления глубоких и сверхглубоких отверстий. Основная конструктивная особенность этих сверл состоит в том, что главные режущие кромки и вершина сверла расположены не симметрично относительно его оси на 0,2… 0,25 мм диаметра, что требует обязательного направления сверла по кондукторной втулке, по предварительно просверленному цилиндрическому, либо центровому отверстию. Ружейное сверло типовой конструкции с наружным отводом стружки состоит из колоска, который оснащен одной режущей, двумя направляющими пластинами и имеет отверстие для подвода смазывающе-охлаждающей жидкости (СОЖ). Ружейные сверла с наружным отводом стружки используются для обработки отверстий диаметром от 3 до 30 мм.

Надежное ориентирование сверла в обрабатываемом отверстии, комбинированное резание (выглаживание в процессе обработки), подача СОЖ в зону резания под давлением, стабильное удаление стружки из зоны резания, отсутствие поперечной режущей кромки, а также возможность достаточно простого оснащения сверла пластинами из твердого сплава позволяет обеспечить за один проход ружейного сверла высокую производительность и малые отклонения размера, формы и расположения оси при малых параметрах шероховатости обработанной поверхности.

Кольцевые сверла (рис. 3.30) применяются для уменьшения сил резания и потребляемой мощности оборудования, повышения производительности обработки сплошных отверстий диаметром более 50 мм, а также уменьшения объема стружки и последующего использования образующегося вдоль оси обрабатываемого отверстия центрального стержня. Кольцевые сверла изготовляются из быстрорежущей стали, ими выполняются отверстия на различных металлорежущих станках (сверлильных, токарных, расточных). Выпускаются сборные кольцевые сверла, корпус которых выполнен из легированной стали 12ХНЗА, а вставные резцы оснащаются пластинами из твердого сплава группы ВК.

В зависимости от требуемого размера отверстий используются различные конструкции кольцевых сверл:

Для образования глубоких отверстий диаметром 110… 180 мм применяются двурезцовые кольцевые сверла (рис. 3.30, а), состоящие из корпуса 1, в котором установлены два сменных резца 2 и 3 и три направляющие пластины 4, 5 и 6;

Для образования глубоких отверстий диаметром 180…250 мм применяют трехрезцовые кольцевые сверла (рис. 3.30, б), отличающиеся от двурезцовых только габаритными размерами и числом резцов;

Для образования отверстий диаметром 50… 100 мм на глубину до 400 мм используются многорезцовые кольцевые сверла (рис. 3.30, в), у которых вставные резцы 1 установлены в корпусе 2 сверла. На наружной поверхности корпуса выполнены винтовые канавки для отвода стружки. Для лучшего направления сверла в его корпус встроены подпружиненные шариковые опоры.