Основные логические связки.

  • § 6. Деление понятий. Классификация
  • § 7. Ограничение и обобщение понятий
  • § 8. Операции с классами (объемами понятий)
  • Глава III суждение
  • § 1. Общая характеристика суждения
  • § 2. Простое суждение
  • § 3. Сложное суждение и его виды
  • § 4. Выражение логических связок (логических постоянных) в естественном языке
  • § 5. Отношения между суждениями по значениям истинности
  • § 6. Деление суждений по модальности
  • Глава IV основные законы (принципы) правильного мышления
  • § 1. Понятие о логическом законе
  • § 2. Законы логики и их материалистическое понимание
  • § 3. Использование формально-логических законов в обучении
  • Глава V умозаключение
  • § 1. Общее понятие об умозаключении
  • § 2. Дедуктивные умозаключения
  • § 3. Выводы из категорических суждений посредством их преобразования
  • § 4. Простой категорический силлогизм1
  • I. Правила терминов
  • § 5. Сокращенный категорический силлогизм (энтимема)
  • § 6. Сложные и сложносокращенные силлогизмы (полисиллогизмы, сориты, эпихейрема)
  • § 7. Условные умозаключения
  • § 8. Разделительные умозаключения
  • § 9. Условно-разделительные (лемматические) умозаключения
  • § 10. Непрямые (косвенные) выводы
  • § 11. Индуктивные умозаключения и их виды
  • § 12. Виды неполной индукции
  • I вид. Индукция через простое перечисление (популярная индукция)
  • II вид. Индукция через анализ и отбор фактов
  • III вид. Научная индукция
  • § 13. Индуктивные методы установления причинных связей
  • § 14. Дедукция и индукция в учебном процессе
  • § 15. Умозаключение по аналогии и его виды. Использование аналогий в процессе обучения
  • Глава VI логические основы теории аргументации
  • § 1. Понятие доказательства
  • § 2. Прямое и непрямое (косвенное) доказательство
  • § 3. Понятие опровержения
  • I. Опровержение тезиса (прямое и косвенное)
  • II. Критика аргументов
  • III. Выявление несостоятельности демонстрации
  • § 4. Правила доказательного рассуждения.
  • II. Правила по отношению к аргументам
  • III. Правила к форме обоснования тезиса (демонстрации) и ошибки в форме доказательства
  • § 5. Понятие о софизмах и логических парадоксах
  • § 6. Доказательство и дискуссия
  • Глава VII гипотеза
  • § 1. Гипотеза как форма развития знаний
  • § 2. Построение гипотезы и этапы ее развития
  • § 3. Способы подтверждения гипотез
  • § 4. Опровержение гипотез
  • § 5. Примеры гипотез, применяющихся на уроках в школе
  • Глава VIII роль логики в процессе обучения
  • § 1. Логическая структура вопроса
  • § 2. К. Д. Ушинский и в. А. Сухомлинский о роли логики в процессе обучения
  • § 3. Развитие логического мышления младших школьников
  • § 4. Развитие логического мышления учащихся в средних и старших классах на уроках литературы, математики, истории и других предметов
  • Глава IX этапы развития логики как науки и основные направления современной символической логики
  • § 1. Краткие сведения из истории классической и неклассической логик
  • § 2. Развитие логики в связи с проблемой обоснования математики
  • § 3. Многозначные логики
  • § 4. Интуиционистская логика
  • § 5. Конструктивные логики
  • § 6. Модальные логики
  • § 7. Положительные логики
  • § 8. Паранепротиворечивая логика
  • § 4. Выражение логических связок (логических постоянных) в естественном языке

    В мышлении мы оперируем не только простыми, но и слож­ными суждениями, образуемыми из простых посредством логи­ческих связок (или операций) - конъюнкции, дизъюнкции, имп­ликации, эквиваленции, отрицания, которые также называются логическими константами, или логическими постоянными. Про­анализируем, каким образом перечисленные логические связки выражаются в естественном (русском) языке.

    Конъюнкция (знак «л») выражается союзами «и», «а», «но», «да», «хотя», «который», «зато», «однако», «не только..., но и» и др. В логике высказываний знак « л » соединяет простые выска­зывания, образуя из них сложные. В естественном языке союз «и» и другие слова, соответствующие конъюнкции, могут соединять существительные, глаголы, наречия, прилагательные и другие части речи. Например, «В корзине у деда лежали подберезовики и маслята» (ab), «Интересная и красиво оформленная книга лежит на столе». Последнее высказывание нельзя разбить на два простых, соединенных конъюнкцией: «Интересная книга лежит на толе» и «Красиво оформленная книга лежит на столе», - так как создается впечатление, что на столе лежат две книги, а не одна.

    В логике высказываний действует закон коммутативности конъюнкции (ab)(ba). В естественном русском языке такого закона нет, так как действует фактор времени. Там, где учитывается последовательность во времени, употребление союза «и» некоммутативно. Поэтому не будут эквивалентными, например, такие два высказывания: 1) «Прицепили паровоз, и поезд тро­нулся» и 2) «Поезд тронулся, и прицепили паровоз».

    В естественном языке конъюнкция может быть выражена не только словами, но и знаками препинания: запятой, точкой с запятой, тире. Например, «Сверкнула молния, загремел гром, пошел дождь».

    О выражении конъюнкции средствами естественного языка пишет С. Клини в своей книге «Математическая логика». В раз­деле «Анализ рассуждений» он приводит (не исчерпывающий) список выражений естественного языка, которые могут быть заменены символами « Л » или «&». Формула А ^ В в естествен­ном языке может выражаться так:

    «Не только А , но и В. Как А, так и В.

    В, хотя и Л. А вместе с В.

    В, несмотря на А. А , в то время как В» 7 .

    Придумать примеры всех этих структур предоставляем чита­телю.

    В естественном (русском) языке дизъюнкция (обозначенная ab и ab) выражается союзами: «или», «либо», «то ли... то ли» и др. Например, «Вечером я пойду в кино или в библиотеку»; «Это животное принадлежит либо к позвоночным, либо к беспоз­воночным»; «Доклад будет то ли по произведениям Л. Н. Тол­стого, то ли по произведениям Ф. М. Достоевского».

    Для обоих видов дизъюнкции действует закон коммутативно­сти: (ab(ba) и (ab)(ba). В естественном языке эта эквивалентность сохраняется. Например, суждение «Я куплю ма­сло или хлеб» эквивалентно суждению «Я куплю хлеб или масло». С. Клини показывает, какими разнообразными способами могут быть выражены в естественном языке импликация (AB) и эквиваленция (A ~B ).

    (Буквами А и В обозначены переменные высказыва­ния.)

    Приведем логические схемы и соответствующие им примеры, иллюстрирующие разнообразные способы выражения имплика­ции А -> В (где А - антецедент, В - ковсеквент).

    1. Если А, то В.

    Если поставщики вовремя доставят детали, то завод выпол­нит свой производственный план.

    2. Коль скоро А, то В.

    Коль скоро приложенные силы снимаются, то сжатая пружина возвращается к своей первоначальной форме.

    3. Когда А, имеет место В.

    Когда наступает плохая погода, имеет место повышение числа сердечно-сосудистых заболеваний у людей.

    4. Для В достаточно А.

    Для того чтобы газы расширились, достаточно их нагреть.

    5. Для А необходимо В.

    Для сохранения мира на Земле необходимо объединить усилия всех государств в борьбе за мир.

    6. А, только если В.

    Студенты этого курса не приходили на субботник, только если они были больны.

    7. В. если А.

    Я разрешу тебе пойти погулять, если ты выполнишь все домашние задания.

    Приведем логические схемы и соответствующие им примеры разнообразных способов выражения эквиваленции.

    1. А, если и только если В.

    Иванов не закончит свои эксперименты к сроку, если и только если ему не помогут сотрудники.

    2. Если А, то В, и наоборот.

    Если студент сдал все экзамены и практику на «отлично», то он получает диплом с отличием, и наоборот.

    3. А, если В, и В, если А.

    Многоугольник является вписанным в круг, если его вершины лежат на окружности, и вершины многоугольника лежат на окру­жности, если этот многоугольник является вписанным в круг.

    4. Для А необходимо и достаточно В.

    Для того чтобы число без остатка делилось на 3, необходимо и достаточно, чтобы сумма цифр этого числа делилась без остатка на 3.

    5. А равносильно В (иногда).

    То, что площадь правильного многоугольника равна произ­ведению полупериметра на апофему, равносильно тому, что пло­щадь правильного многоугольника равна произведению периме­тра на половину апофемы.

    6. А тогда и только тогда, когда В.

    Фирма будет согласна принять предложение о покупке товара тогда и только тогда, когда будет снижена цена этого товара на 15%.

    Из приведенных выше схем и соответствующих им высказы­ваний с конкретным разнообразным содержанием становится ясно, насколько многогранны в естественном языке (в частности, в русском) средства выражения импликации, эквиваленции и дру­гих логических связок (логических терминов). Это можно сказать и о других естественных языках 9 .

    Импликация (ab) не совсем соответствует по смыслу союзу «если... то» естественного языка, так как в ней может отсут­ствовать содержательная связь между суждениями а и b . В логике высказываний законом является формула:(ab)(ab).

    Но в естественном языке дело обстоит иначе. Иногда союз «если, то» выражает не импликацию, а конъюнкцию. Например, «Если вче­ра было пасмурно, то сегодня ярко светит солнце». Это сложное суждение выражается формулой ab. Кроме логических связок для выражения общих и частных суждений в логике используются квантор общности и квантор существования. Запись с квантором общности VP() обычно читается так: «Все х (из некоторой области объектов) обладают свойством Р », а запись с квантором существования ЗхР (х ) чита­ется так: «Существуют такие х (в данной области), которые обладают свойством Р». Например, 3x(x>100) читается как «Существуют такие х, которые больше 100», где под х подразумева­ются числа. Квантор общности выражается словами: «все», «вся­кий», «каждый», «ни один» и др. Квантор существования выража­ется словами: «некоторые», «существуют», «большинство», «ме­ньшинство», «только некоторые», «иногда», «тот, который», «не все», «многие», «немало», «немногие», «много», «почти все» и др.

    С. Клини пишет о том, что, переводя выражения обычного языка с помощью табличных пропозициональных связок, мы лишаемся некоторых оттенков смысла, но зато выигрываем в то­чности 10 .

    В практике математических и иных рассуждений имеются понятия «необходимое условие» и «достаточное условие». Условие называется необходимым, если оно вытекает из заключения (след­ствия). Условие называется достаточным, если из него вытекает заключение (следствие). В импликации а -> b переменная а является основанием. Она называется антецедентом. Переменная b - след­ствием (заключением). Она называется консеквентом.

    Учащимся на уроках математики предлагаются задачи типа 1-4, требующие в каждом из следующих предложений вместо многоточия поставить слова: «необходимо» или «достаточно», либо «необходимо и достаточно»:

    1. Для того чтобы сумма двух целых чисел была четным числом... чтобы каждое слагаемое было четным.

    2. Для того чтобы число делилось на 15 ... чтобы оно дели­лось на 5.

    3. Для того чтобы произведение - 3) (х +2) (х - 5) было рав­но 0, ... чтобы х = 3.

    4. Для того чтобы четырехугольник был прямоугольником... чтобы все его углы были равны 11 .

    Чтобы заложить основу для нечеткой логики, необходимо расширить содержание таких логических операций, как отрицание, дизъюнкция, конъюнкция и импликация применительно к высказываниям, которые имеют не числовые, а лингвистические значения истинности. Другими словами, мы должны уметь вычислять значение истинности высказывания и , зная лингвистические значения истинности высказываний и . При рассмотрении этой проблемы полезно иметь в виду, что если - нечеткое подмножество универсального множества и , то два следующих утверждения эквивалентны:

    Таким образом, вопрос «Что является значением истинности высказывания и , если заданы лингвистические значения истинности и ?» аналогичен вопросу, который мы поставили в § 3: «Какова степень принадлежности элемента множеству, если заданы степени принадлежности элемента множествам и ?»

    Чтобы ответить на последний вопрос, мы использовали принцип обобщения. Будем придерживаться той же процедуры для обобщения смысла отрицания не , а также связок и , или и влечет применительно к лингвистическим значениям истинности.

    В частности, если - точка в , представляющая значение истинности высказывания «» (или просто ), где - элемент универсального множества , то значение истинности высказывания не (или) определяется выражением

    . (6.7)

    Предположим теперь, что - не точка в , а нечеткое подмножество интервала , представленное в виде

    где - точки в , а - их степени принадлежности множеству . Тогда, применяя принцип обобщения (3.80) к (6.7), получим выражения для как нечеткого подмножества интервала , т. е.

    В частности, если значение истинности есть истинно , т. е.

    , (6.10)

    то значение истинности ложно можно записать в виде

    . (6.11)

    Например, если

    то значение истинности высказывания не имеет вид

    Замечание 6.1. Следует отметить, что если

    то согласно (3.33), имеем

    Однако если

    То же самое относится и к лингвистическим неопределенностям. Например, согласно определению неопределенности очень (см. (5.38)),

    С другой стороны, значение истинности высказывания очень равно

    Перейдем к бинарным связкам. Пусть и - лингвистические значения истинности высказываний и соответственно. Для простоты будем пользоваться теми же обозначениями, что и в случае, когда и – точки в:

    имея при этом в виду, что в случае, когда и - точки в , операции , и сводятся к операциям min (конъюнкция), max (дизъюнкция) и вычитания из единицы соответственно.

    где и - точки в , а и - соответствующие им степени принадлежности множествам и , то, применяя принцип обобщения к , получим

    Таким образом, значение истинности высказывания и есть нечеткое подмножество интервала , носитель которого состоит из точек вида

    с соответствующими степенями принадлежности . Отметим, что выражение (6.25) эквивалентно выражению (3.107) для функции принадлежности пересечения нечетких множеств, имеющих нечеткие функции принадлежности.

    Пример 6.2. Предположим, что

    Тогда, используя (6.25), получаем

    (6.28)

    Аналогично, для значения истинности высказывания или получим

    (6.29)

    Значение истинности высказывания зависит от того, как определена связка для числовых значений истинности. Так, если для случая, когда и - точки в , мы положим (см. (8.24))

    то, применив принцип обобщения, получим (см. замечание 3.20)

    (6.31)

    для случая, когда и - нечеткие подмножества интервала .

    Замечание 6.3. Важно четко понимать разницу между связкой и в терме, скажем, истинный и не очень истинный и символом в высказывании истинный не истинный . В первом случае нас интересует смысл терма истинный и не истинный , и связка и определяется отношением

    (6.32)

    где - смысл терма (см. определение 5.1). Напротив, в случае терма истинный не истинный нас в основном интересует значение истинности высказывания истинный не истинный , которое получается из равенства (см. (6.19))

    Таким образом, в (6.32)символ обозначает операцию пересечения нечетких множеств, а в (6.33) символ обозначает операцию конъюнкции. Проиллюстрируем это различие на простом примере. Пусть , а и - нечеткие подмножества множества , определяемые следующим образом:

    в то время как

    Отметим, что такое же различие имеет место и в случае отрицания не и операции , как указывалось в замечании 6.1.

    Замечание 6.4. Следует отметить, что, применяя принцип обобщения (3.96) к вычислению значений , и , мы молчаливо предполагали, что и - невзаимодействующие нечеткие переменные в смысле замечания 3.20. Если и - взаимодействующие переменные, то необходимо применять принцип обобщения не в форме (3.96), а в форме (3.97). Интересно заметить, что вопрос о возможном взаимодействии между и возникает даже в том случае, когда и - точки в , а не нечеткие переменные.

    Замечание 6.5. Применяя принцип обобщения с целью определения операций , , и применительно к лингвистическим значениям истинности, мы в сущности рассматриваем нечеткую логику как обобщение многозначной логики. В таком же смысле можно рассматривать классическую трёхзначную логику как обобщение двузначной логики (см. (6.64))., от 0 до 1.истинный и ложный , можно заключить, что

    что согласуется с (6.25).

    Определение. Под высказыванием принято понимать языковое предложение, о котором имеет смысл говорить, что оно истинно или ложно в данный момент времени.

    Высказывания чаще всего обозначают маленькими латинскими буквами a, b, c, х1, х2, …

    В логике высказываний интересуются не содержанием, а истинностью или ложностью высказываний. Истинностные значения – истина и ложь – будем обозначать И и Л соответственно. Множество {И, Л} называется множеством истинностных значений.

    Определение. Высказывание называют простым (элементарным), если оно рассматривается как некое неделимое целое (аналогично элементу множества). Сложным (составным) называется высказывание, составленное из простых с помощью логических связок.

    В естественном языке роль связок при составлении сложных предложений из простых играют следующие грамматические средства: союзы «и», «или», «не»; слова «если …, то», «либо … либо», «тогда и только тогда, когда» и др. В логике высказываний логические связки, используемые для составления сложных высказываний, обязаны быть определены точно. Рассмотрим логические связки (операции) над высказываниями, при которых истинностные значения составных высказываний определяются только истинностными значениями составляющих высказываний, а не их смыслом.

    В дальнейшем значению «истина» будем ставить в соответствие 1 , а «ложь» - 0 . Каждой логической операции ставится в соответствие таблица истинности . Таблица истинности выражает значения истинности высказываний в зависимости от значений элементарных высказываний. В дальнейшем буден использовать таблицу истинности для установления истинностных значений сложных высказываний при данных значениях входящих в него элементарных высказываний.

    Тогда - «Не верно, что Степан любит танцевать».

    № набора a b aЩb

    Определение. Конъюнкцией двух высказываний является новое высказывание, которое истинно только тогда, когда оба исходных высказывания истинны (табл. 4).

    ГРАФЫ. ОПЕРАЦИИ НАД ГРАФАМИ.

    МАТРИЦЫ И ДЕЙСТВИЯ НАД НИМИ.

    Матрицы (и соответственно математический раздел - матричная алгебра) имеют важное значение в прикладной математике, так как позволяют записать в достаточно простой форме значительную часть математических моделей объектов и процессов. Термин "матрица" появился в 1850 году. Впервые упоминались матрицы еще в древнем Китае, позднее у арабских математиков.

    Матрицей A=A mn порядка m*n называется прямоугольная таблица чисел, содержащая m - строк и n - столбцов .

    Элементы матрицы a ij , у которых i=j, называются диагональными и образуют главную диагональ .

    Для квадратной матрицы (m=n) главную диагональ образуют элементы a 11 , a 22 ,..., a nn .

    Равенство матриц.

    A=B , если порядки матриц A и B одинаковы и a ij =b ij (i=1,2,...,m; j=1,2,...,n)

    Действия над матрицами.

    1. Сложение матриц - поэлементная операция

    2. Вычитание матриц - поэлементная операция

    3. Произведение матрицы на число - поэлементная операция

    4. Умножение A*B матриц по правилу строка на столбец (число столбцов матрицы А должно быть равно числу строк матрицы B)

    Широко употребительных логических связок пять. Это отрицание (изображается знаком ¬), конъюнкция (знак ), дизъюнкция (знак v), импликация (знак ) и эквивалентность (знак ).

    Высказывание ¬A (читается «не A ») означает, что высказывание A ложно. Иначе говоря, ¬A истинно тогда, когда A ложно, и ложно тогда, когда A истинно.

    Высказывание A B (читается «A и B ») означает утверждение, что верно и A , и B . Оно верно только в том случае, если верны оба высказывания A и B .

    Высказывание A v B A или B ») верно, если верно хотя бы одно из высказываний A и B .

    Высказывание A B читается «A влечет B » или «если A , то B ». Оно неверно, если A истинно, B ложно, и верно во всех остальных случаях.

    Наконец, высказывание A B верно в том случае, если высказывания A и B либо оба истинны, либо оба ложны.

    Для обозначения структуры связей пользуются скобками подобно тому, как это делается в алгебре для обозначения порядка выполнения арифметических действий. Так, например, высказывание ¬A B означает «A неверно, а B верно», а высказывание ¬(A B ) - «неверно, что A и B оба верны». И так же, как в алгебре, для уменьшения числа скобок устанавливается порядок старшинства связок по силе связи. Выше мы перечислили связки в порядке ослабления связи. Например, конъюнкция связывает сильнее, чем импликация, поэтому высказывание A B C понимается как A (B C ), но не как (A B ) C . Это соответствует тому, что в алгебре a + b ? c означает a + (b ? c ), но не (a + b ) ? c .

    Приведем несколько примеров составных высказываний.

    Известная скороговорка утверждает: «цапля чахла, цапля сохла, цапля сдохла». Это высказывание можно записать в виде: «цапля чахла» «цапля сохла» «цапля сдохла».

    Соотношение 0 < Z < 1 есть конъюнкция «Z > 0» «Z < 1», a соотношение |Z | > 1 - дизъюнкция «Z > 1» v «Z < -1». Определение логической связки данное выше, можно записать так:

    [(A B ) (A B ) v (¬A ¬B )] [(A B ) v (¬A ¬B ) (A B )]

    Предоставляем читателю перевести на обычный язык следующее высказывание:

    «Свет включен» «Лампочка не горит» «Нет электричества» v «Перегорели пробки» v «Перегорела лампочка».

    Если считать, что высказывания могут быть только истинными или ложными и, сверх этого, о высказывании ничего сказать нельзя, то перечисленных связок достаточно, чтобы выразить все мыслимые конструкции из высказываний. Достаточно даже двух связок, например отрицания и конъюнкции или отрицания и дизъюнкции. Такая ситуация имеет место, в частности, в отношении утверждений математики. Поэтому в математической логике других связок не используется.

    Однако естественный язык отражает большее разнообразие в оценке высказываний, чем просто деление их на истинные и ложные. Например, высказывание можно рассматривать как бессмысленное или как недостоверное, хотя и возможное («в этом лесу, наверное, есть волки»). Этим вопросам посвящены специальные разделы логики, в которых находятся другие связки. Большого значения для современной науки эти разделы (в отличие от классической математической логики) не имеют, и мы их касаться не будем.

    Сложным называют суждение, содержащее логи­ческие связки и состоящее из нескольких простых суждений.

    В дальнейшем простые суждения мы будем рассматривать как некие неделимые атомы, как

    элементы, из соединения которых возникают сложные структуры.

    Простые суждения будем обозначать отдельными латинскими буквами: а, Ь, с, d,... Каждая такая буква представляет некото­рое простое суждение. Откуда это видно? Отвле­каясь от сложной внутренней структуры простого суждения, от его количества и качества, забыв о том, что в нем имеется субъект и предикат, мы удерживаем лишь одно свойство суждения - то, что оно может быть истинным или ложным. Все остальное нас здесь не интересует. И когда мы го­ворим, что буква “а” представляет суждение, а не понятие, не число, не функцию, мы имеем в виду только одно: это “а” представляет истину или ложь. Если под “а” мы подразумеваем суждение “Кенгуру живут в Австралии”, мы подразумеваем истину; если же под “а” мы подразумеваем суж­дение “Кенгуру живут в Сибири”, мы подразуме­ваем ложь. Таким образом, наши буквы “а”, “Ь”, “с” и т.д. - это переменные, вместо которых могут подставляться истина или ложь.

    Логические связки представляют собой фор­мальные аналоги союзов нашего родного естест­венного языка. Как сложные предложения строятся из простых с помощью союзов “однако”, “так как”, “или” и т.п., так и сложные суждения образуются из простых с помощью логических связок. Здесь ощу­щается гораздо большая связь мысли с языком, по­этому в дальнейшем мы вместо слова “суждение”, обозначающего чистую мысль, часто будем исполь­зовать слово “высказывание”, обозначающее мысль в ее языковом выражении. Итак, давайте познакомимся с наиболее употребительными логиче­скими связками.

    Отрицание. В естественном языке ему соответ­ствует выражение “Неверно, что...”. Отрицание обычно обозначается знаком “-”, стоящим перед буквой, представляющей некоторое суждение: “-а” читается “Неверно, что а”. Пример: “Неверно, что Земля - шар”.

    Следует обратить внимание на одно тонкое обсто­ятельство. Выше мы говорили о простых отрицатель­ных суждениях. Как их отличить от сложных суждений с отрицанием? Логика различает два вида отрица­ния - внутреннее и внешнее. Когда отрицание стоит внутри простого суждения перед связкой “есть”, то в этом случае мы имеем дело с простым отрицатель­ным суждением, например: “Земля не шар”. Если же отрицание внешним образом присоединяется к суж­дению, например: “Неверно, что Земля - шар”, то та­кое отрицание рассматривается как логическая связка, преобразующая простое суждение в сложное.

    Конъюнкция. В естественном языке этой связке соответствуют союзы “и”, “а”, “но”, “однако” и т.п.

    Чаще всего конъюнкция обозначается значком “&”. Сейчас этот значок часто встречается в названиях различных фирм и предприятий. Суждение с такой связкой называется конъюнктивным, или просто конъюнкцией, и выглядит следующим образом:

    а & Ь. Пример: “В корзине у деда лежали подбере­зовики и маслята”. Это сложное суждение пред­ставляет собой конъюнкцию двух простых сужде­ний: -“В корзине у деда лежали подберезовики” и “В корзине у деда лежали маслята”.

    Дизъюнкция. В естественном языке этой связке соответствует союз “или”. Обычно она обозначается знаком “v”. Суждение с такой связкой называется дизъюнктивным, или просто дизъюнкцией, и выгля­дит следующим образом: а v Ь.

    Союз “или” в естественном языке употребляется в двух разных смыслах: нестрогое “или” - когда члены дизъюнкции не исключают друг друга, т.е. могут быть одновременно истинными, и строгое “или” (часто заменяется парой союзов “либо..., ли­бо...”) - когда члены дизъюнкции исключают друг друга. В соответствии с этим различают и два вида дизъюнкции - строгую и нестрогую.

    Импликация. В естественном языке ей соответ­ствует союз “если... то”. Она обозначается знаком “->”. Суждение с такой связкой называется импликативным, или просто импликацией, и выглядит следующим образом: а -> Ь. Пример: “Если по про­воднику проходит электрический ток, то проводник нагревается”. Первый член импликации называется антецедентом, или основанием; второй - консеквентом, или следствием. В повседневном языке со­юз “если... то” обычно соединяет предложения, ко­торые выражают причинно-следственную связь яв­лений, причем первое предложение фиксирует причину, а второе - следствие. Отсюда и названия членов импликации.

    Представление высказываний естественного языка в символическом виде с помощью ука­занных выше обозначений означает их форма­лизацию, которая во многих случаях оказывает­ся полезной. 4) Прекрасный остров лежал в теплом океане. И все бы хорошо, да повадились на этом острове ус­траиваться на жительство чужестранцы. Едут и едут со всех концов света, уж коренных жителей стеснять стали. Дабы воспрепятствовать нашествию чужест­ранцев, правитель острова издал указ: “Всякий при­езжий, желающий поселиться на нашем благосло­венном острове, обязан высказать какое-нибудь суждение. Если суждение окажется истинным, чу­жестранца следует расстрелять; если же суждение окажется ложным, его следует повесить”. Боишь­ся - тогда молчи и поворачивай восвояси!

    Спрашивается: какое нужно высказать сужде­ние, чтобы остаться в живых и все-таки поселиться на острове?