О происхождении терминов "якорь" и "ротор". Балансировка якоря электродвигателя

Cтраница 1


Якорь электродвигателя состоит из вала, на который напрессовывается сердечник, набранный из лакированной электротехнической стали толщиной 0 5 мм, с пазами для обмотки, и коллектор. Обмотка якоря двухслойная с диаметральным шагом из провода марки ПЭЛШКО. Коллектор набирается из пластин красной меди, изолированных друг от друга миканитовыми прокладками. Армирование коллектора выполняется на пластмассе и осуществляется при помощи стальных колец, укладываемых перед опрессовкой коллектора в выточки, имеющие форму ласточкиного хвоста. Для предотвращения замыкания коллекторных пластин кольца перед укладкой изолируются лентой из стекловолокна. В результате армирования прочность коллектора увеличивается. Присоединение обмотки к коллектору производится так же, как и в двигателях постоянного тока.  

Якорь электродвигателя разбирают в такой последовательности: отвертывают конусный ролик 4 (см. рис. 82) с вала якоря; при помощи съемника спрессовывают подшипник 5 и вентилятор 8; снимают маслоотбойные кольца 2; заменяют негодные подшипники, снимают обмотку, наматывают новую, собирают якорь и электродвигатель. Центровку якоря по горизонтали производят крышкой (заглушкой) 19 подшипника.  

Якорь электродвигателя состоит из пакета пластин трансформаторной стали, якорной обмотки, вентилятора (крыльчатки) и коллектора. Коллектор якоря имеет медные пластины (ламели), между которыми положены прокладки из миканита.  

Схема вращения натирочных.  

Якорь электродвигателя состоит из пакета пластин трансфор-матерной стали, якорной обмотки, вентилятора (крыльчатки) и коллектора.  

Якорь электродвигателя вращается на двух подшипниках, расположенных в подшипниковых щитах. На валу якоря для охлаждения электродвигателя имеется центробежный вентилятор. Воздух засасывается через жалюзи крышек подшипникового щита со стороны коллектора, проходит через машину и выбрасывается вентилятором через решетки верхнего подшипникового щита.  

Якорь электродвигателя вращается в двух самоустанавливающихся бронзографитовых втулках, пропитанных турбинным маслом.  


Якорь электродвигателя собран из листов 7 такой же формы, как и якорь двигателя ДП-4. Катушки 6 обмотки якоря намотаны на зубцы сердечника и изолированы от них полосками электрокартона. Три выводных конца катушек якоря соединены между собой, а три другие припаяны к трем коллекторным пластинам, запрессованным в пластмассу.  

Вращающаяся часть машин – якорь 9 (рисунок 1.1) состоит из сердечника 7, обмотки 8 и коллектора 5.

Сердечник имеет цилиндрическую форму. Он набирается из колец или сегментов листовой электротехнической стали, на внешней поверхности которых выштампованы пазы. В пазы сердечника укладываются секции из медного провода. Концы секций, которые выводятся на коллектор и припаиваются к его пластинам, образуют замкнутую обмотку якоря.


Принцип действия генератора. Простейший генератор можно представить в виде витка, вращающегося в магнитном поле (рис. 1.4, а, б). Концы витка выведены на две пластины коллектора. К коллекторным пластинам прижимаются неподвижные щетки, к которым подключается внешняя цепь.

Принцип работы генератора основан на явлении электромагнитной индукции. Пусть виток приводится во вращение от внешнего приводного двигателя ПД. Проводники активной части витка пересекают магнитное поле и в них по закону электромагнитной индукции наводятся ЭДС e 1 и e 2 , направление которых определяется по правилу правой руки. При вращении витка по направлению движения часовой стрелки в верхнем проводнике, находящемся под северным полюсом, ЭДС направлена от нас, а в нижнем, находящемся под южным полюсом, – к нам. По ходу витка ЭДС складываются, результирующая ЭДС е = е 1 – е 2 .

Если внешняя цепь замкнута, то по ней потечет ток, направленный от нижней щетки к потребителю и от него – к верхней щетке. Нижняя щетка оказывается положительным выводом генератора, а верхняя – отрицательным. При повороте витка на 180° проводники из зоны одного полюса переходят в зону другого полюса и направление ЭДС в них изменяется на обратное. Одновременно верхняя коллекторная пластина входит в контакт с нижней щеткой, а нижняя – с верхней, направление тока во внешней цепи не изменяется. Таким образом, коллекторные пластины не только обеспечивают соединение вращающего витка с внешней цепью, но и выполняют роль переключающегося устройства, т. е. являются простейшим механическим выпрямителем.При отсутствии нагрузки (при разомнутой внешней цепи генератора) имеет место режим холостого хода генератора. В этом случае от дизеля или турбины требуется только такое количество механической энергии, которое необходимо для преодоления трения и компенсации других внутренних потерь энергии в генераторе. При увеличении нагрузки генератора, т. е. отдаваемой им электрической мощности Р эл, увеличиваются ток i, проходящий по проводникам обмотки якоря, и создаваемый им тормозящий момент М. Следовательно, должна быть соответственно увеличена и механическая мощность Р мх, которую генератор должен получить от дизеля или турбины, для продолжения нормальной работы.

Таким образом, чем больше электрической энергии потребляется, например, электродвигателями тепловоза от тепловозного генератора, тем больше механической энергии забирает он от вращающего его дизеля и тем больше топлива необходимо подавать дизелю.

Из рассмотренных выше условий работы электрического генератора следует, что характерным для него является: совпадение по направлению тока i и э. д. с е в проводниках обмотки якоря; это указывает на то, что машина отдает электрическую энергию; возникновение электромагнитного тормозного момента М, направленного против вращения якоря; из этого вытекает необходимость получения машиной извне механической энергии.

Принцип действия электрического двигателя. Принципиально электродвигатель выполнен так же, как генератор. Простейший электродвигатель представляет собой виток, расположенный на якоре, который вращается в магнитном поле полюсов. Проводники витка образуют обмотку якоря. Если подключить виток к источнику электрической энергии, например к электрической сети 6, то по каждому его проводнику начнет проходить электрический ток i. Этот ток, взаимодействуя с магнитным полем полюсов, создает электромагнитные силы F. На проводник, расположенный под южным полюсом, будет действовать сила F, направленная вправо, а на проводник, лежащий под северным полюсом сила F, направленная влево. В результате совместного действия этих сил создается электромагнитный вращающий момент М, направленный против часовой стрелки, приводящий якорь с проводником во вращение с некоторой частотой п. Если соединить вал якоря с каким-либо механизмом или устройством (колесной парой тепловоза или электровоза, станком и пр.), то электродвигатель будет приводить это устройство во вращение, т. е. отдавать ему механическую энергию. При этом внешний момент М вн, создаваемый этим устройством, будет направлен против электромагнитного момента М.

Выясним, почему при вращении якоря электродвигателя, работающего под нагрузкой, расходуется электрическая энергия. Как было установлено, при вращении проводников якоря в магнитном поле в каждом проводнике индуцируется э. д. с, направлении вращение э. д. с. е, индуцированная в проводнике, расположенном под южным полюсом, будет направлена от нас, а э. д. с. е, индуцированная в проводнике, расположенном под северным полюсом, будет направлена к нам. Э. д. с. е, индуцированные в каждом проводнике, направлены против тока i, т. е. они препятствуют его прохождению по проводникам.

Для того чтобы ток i продолжал проходить по проводникам якоря в прежнем направлении, т. е. чтобы электродвигатель продолжал нормально работать и развивать требуемый вращающий момент, необходимо приложить к этим проводникам внешнее напряжение U, направленное навстречу э. д. с. и большее по величине чем суммарная э. д. с. E, индуцированная во всех последовательно соединенных проводниках обмотки якоря. Следовательно, необходимо подводить к электродвигателю из сети электрическую энергию.

При отсутствии нагрузки (внешнего тормозного момента, приложенного к валу двигателя) электродвигатель потребляет от внешнего источника (сети) небольшое количество электрической энергии и по нему проходит небольшой ток холостого хода. Эта энергия расходуется на покрытие внутренних потерь мощности в машине.

При возрастании нагрузки увеличивается потребляемый электродвигателем ток и развиваемый им электромагнитный вращающий момент. Следовательно, увеличение механической энергии, отдаваемой электродвигателем при возрастании нагрузки, вызывает автоматически увеличение электроэнергии, забираемой им от источника.

Из рассмотренных выше условий работы электрического двигателя следует, что характерным для него является:

совпадение по направлению электромагнитного момента М и частоты вращения п; это характеризует отдачу машиной механической энергии; возникновение в проводниках обмотки якоря э. д. с. е, направленной против тока i и внешнего напряжения U. Из этого вытекает необходимость получения машиной извне электрической энергии.

Коллектор (рис. 1.3) набран из медных пластин клинообразной формы, изолированных друг от друга, и корпуса 3 миканитовыми прокладками 2 , образующими в сборе цилиндр, который крепится на валу якоря.

Рисунок 1.3 устройство коллектора

Принцип обратимости электрических машин. Рассматривая принцип действия генератора и электродвигателя, мы установили, что устроены они одинаково и что в основе работы этих машин много общего. Процесс преобразования механической энергии в электрическую в генераторе и электрической энергии в механическую в двигателе связан с индуцированием э. д. с. во вращающихся в магнитном поле проводниках обмотки якоря и возникновением электромагнитных сил в результате взаимодействия магнитного поля и проводников с током. Отличие генератора от электродвигателя заключается только во взаимном направлении э. д. с, тока, электромагнитного момента и частоты вращения.


Рис. 68. Направление э. д. с. Е, тока I, частоты вращения якоря п и электромагнитного момента М при работе электрической машины постоянного тока в двигательном (а) и генераторном (б) режимах

Обобщая рассмотренные процессы работы генератора и электродвигателя, можно установить принцип обратимости электрических машин. Согласно этому принципу любая электрическая машина может работать и генератором и электродвигателем и переходить из генераторного режима в двигательный и наоборот.

Для выяснения этого положения рассмотрим работу электрической машины постоянного тока при различных условиях. Если внешнее напряжение U больше суммарной э. д. с. Г. во всех последовательно соединенных проводниках обмотки якоря, то ток I будет проходить в указанном на рис. 68, а направлении и машина будет работать электродвигателем, потребляя из сети электрическую энергию и отдавая механическую. Однако если по какой-либо причине э. д. с. Е станет больше внешнего напряжения U, то ток I в обмотке якоря изменит свое направление (рис. 68, б) и будет совпадать с э. д. с. Е. При этом изменится и направление электромагнитного момента М, который будет направлен против частоты вращения п. Совпадение по направлению э. д. с. E и тока Iозначает, что машина стала отдавать в сеть электрическую энергию, а появление тормозного электромагнитного момента М говорит о том, что она должна потреблять извне механическую энергию. Следовательно, когда э. д. с. Е, индуцированная в проводниках обмотки якоря, становится больше напряжения сети U, машина переходит из двигательного режима работы в генераторный, т. е. при E < U машина работает двигателем, при Е > U - генератором.

Перевод электрической машины из двигательного режима в генераторный можно осуществить различными способами: уменьшая напряжение U источника, к которому подключена обмотка якоря, или увеличивая э. д. с. E в обмотке якоря.

3. КЛАССИФИКАЦИЯ, ПРИНЦИП ДЕЙСТВИЯ, КОНСТРУКЦИЯ,

ОСНОВНЫЕ ХАРАКТЕРИСТИКИ, ПРИНЦИПЫ РЕГУЛИРОВАНИЯ

ОБРАТИМОСТИ ЭЛЕКТРИЧЕСКИХ МАШИН ПЕРЕМЕННОГО ТОКА.

Машины переменного тока. Описание классификация.

Электрическая машина имеет статор и ротор, разделенные воздушным зазором (рис.1 и рис. 2). Активными частями ее являются магнитопровод и обмотки. Все остальные части - конструктивные, обеспечивающие необходимую жесткость, прочность, возможность вращения, охлаждения и т. п.

Магнитопровод машины, по которому замыкается переменный магнитный поток, выполняют шихтованным - из листов электротехнической стали, как и у трансформатора. Если поток постоянный, то магнитопровод можно выполнять массивным; в этом случае он может осуществлять и конструктивные функции, т. е. служить элементом, обеспечивающим прочность данной части машины (статора или ротора).

Так как в частях электрических машин магнитный поток замыкается по сложным контурам, отличным от прямолинейных, в них, как правило, применяется изотронная холоднокатаная сталь. Только для изготовления полюсов синхронных машин и крупных машин постоянного тока иногда применяется анизотропная холоднокатаная сталь, так как в полюсах направление магнитных линий совпадает с направлением прокатки, в котором магнитная проницаемость очень велика. Сердечники статоров и роторов асинхронных машин и якорей синхронных машин постоянного тока штампуют из изотронной рулонной холоднокатной стали, позволяющей при раскрое получать экономию порядка 10-15% по сравнению с листовой, вследствие чего листовая сталь применяется очень редко.

Любой электрический двигатель предназначен для совершения механической работы за счет расхода приложенной к нему электроэнергии, которая преобразуется, как правило, во вращательное движение. Хотя в технике встречаются модели, которые сразу создают поступательное движение рабочего органа. Их называют линейными двигателями.

В промышленных установках электромоторы приводят в действие различные станки и механические устройства, участвующие в технологическом производственном процессе.

Внутри бытовых приборов электродвигатели работают в стиральных машинах, пылесосах, компьютерах, фенах, детских игрушках, часах и многих других устройствах.

Основные физические процессы и принцип действия

На движущиеся внутри электрические заряды, которые называют электрическим током, всегда действует механическая сила, стремящаяся отклонить их направление в плоскости, расположенной перпендикулярно ориентации магнитных силовых линий. Когда электрический ток проходит по металлическому проводнику или выполненной из него катушке, то эта сила стремится подвинуть/повернуть каждый проводник с током и всю обмотку в целом.

На картинке ниже показана металлическая рамка, по которой течет ток. Приложенное к ней магнитное поле создает для каждой ветви рамки силу F, создающую вращательное движение.



Это свойство взаимодействия электрической и магнитной энергии на основе создания электродвижущей силы в замкнутом токопроводящем контуре положено в работу любого электродвигателя. В его конструкцию входят:

    обмотка, по которой протекает электрический ток. Ее располагают на специальном сердечнике-якоре и закрепляют в подшипниках вращения для уменьшения противодействия сил трения. Эту конструкцию называют ротором;

    статор, создающий магнитное поле, которое своими силовыми линиями пронизывает проходящие по виткам обмотки ротора электрические заряды;

    корпус для размещения статора. Внутри корпуса сделаны специальные посадочные гнезда, внутри которых вмонтированы внешние обоймы подшипников ротора.

Упрощенно конструкцию наиболее простого электродвигателя можно представить картинкой следующего вида.



При вращении ротора создается крутящий момент, мощность которого зависит от общей конструкции устройства, величины приложенной электрической энергии, ее потерь при преобразованиях.

Величина максимально возможной мощности крутящего момента двигателя всегда меньше приложенной к нему электрической энергии. Она характеризуется величиной коэффициента полезного действия.

Виды электродвигателей

По виду протекающего по обмоткам тока их подразделяют на двигатели постоянного или переменного тока. Каждая из этих двух групп имеет большое количество модификаций, использующих различные технологические процессы.

Электродвигатели постоянного тока

У них магнитное поле статора создается стационарно закрепленными либо специальными электромагнитами с обмотками возбуждения. Обмотка якоря жестко вмонтирована в вал, который закреплен в подшипниках и может свободно вращаться вокруг собственной оси.

Принципиальное устройство такого двигателя показано на рисунке.



На сердечнике якоря из ферромагнитных материалов расположена обмотка, состоящая из двух последовательно соединенных частей, которые одним концом подключены к токопроводящим коллекторным пластинам, а другим скоммутированы между собой. Две щетки из графита расположены на диаметрально противоположных концах якоря и прижимаются к контактным площадкам коллекторных пластин.

На нижнюю щетку рисунка подводится положительный потенциал постоянного источника тока, а на верхнюю - отрицательный. Направление протекающего по обмотке тока показано пунктирной красной стрелкой.

Ток вызывает в нижней левой части якоря магнитное поле северного полюса, а в правой верхней - южного (правило буравчика). Это приводит к отталкиванию полюсов ротора от одноименных стационарных и притяжению к разноименным полюсам на статоре. В результате приложенной силы возникает вращательное движение, направление которого указывает коричневая стрелка.

При дальнейшем вращении якоря по инерции полюса переходят на другие коллекторные пластины. Направление тока в них изменяется на противоположное. Ротор продолжает дальнейшее вращение.

Простая конструкция подобного коллекторного устройства приводит к большим потерям электрической энергии. Подобные двигатели работают в приборах простой конструкции или игрушках для детей.

Электродвигатели постоянного тока, участвующие в производственном процессе, имеют более сложную конструкцию:

    обмотка секционирована не на две, а на большее количество частей;

    каждая секция обмотки смонтирована на своем полюсе;

    коллекторное устройство выполнено определенным количеством контактных площадок по числу секций обмоток.

В результате этого создается плавное подключение каждого полюса через свои контактные пластины к щеткам и источнику тока, снижаются потери электроэнергии.

Устройство подобного якоря показано на картинке.



У электрических двигателей постоянного тока можно реверсировать направление вращения ротора. Для этого достаточно изменить движение тока в обмотке на противоположное сменой полярности на источнике.

Электродвигатели переменного тока

Они отличаются от предыдущих конструкций тем, что электрический ток, протекающий в их обмотке, описывается по , периодически изменяющему свое направление (знак). Для их питания напряжение подается от генераторов со знакопеременной величиной.

Статор таких двигателей выполняется магнитопроводом. Его делают из ферромагнитных пластин с пазами, в которые помещают витки обмотки с конфигурацией рамки (катушки).



Синхронные электродвигатели

На картинке ниже показан принцип работы однофазного двигателя переменного тока с синхронным вращением электромагнитных полей ротора и статора.



В пазах статорного магнитопровода по диаметрально противоположным концам размещены проводники обмотки, схематично показанные в виде рамки, по которой протекает переменный ток.

Рассмотрим случай для момента времени, соответствующего прохождению положительной части его полуволны.

В обоймах подшипника свободно вращается ротор с вмонтированным постоянным магнитом, у которого ярко выражены северный «N рот» и южный «S рот» полюса. При протекании положительной полуволны тока по обмотке статора в ней создается магнитное поле с полюсами «S ст» и «N ст».

Между магнитными полями ротора и статора возникают силы взаимодействия (одноименные полюса отталкиваются, а разноименные - притягиваются), которые стремятся повернуть якорь электродвигателя из произвольного положения в окончательное, когда осуществляется максимально близкое расположение противоположных полюсов относительно друг друга.

Если рассматривать этот же случай, но для момента времени, когда по рамочному проводнику протекает обратная - отрицательная полуволна тока, то вращение якоря будет происходить в противоположную сторону.

Для придания непрерывного движения ротору в статоре делают не одну обмотку-рамку, а определенное их количество с таким учетом, чтобы каждая их них питалась от отдельного источника тока.

Принцип работы трехфазного двигателя переменного тока с синхронным вращением электромагнитных полей ротора и статора показан на следующей картинке.



В этой конструкции внутри магнитопровода статора смонтированы три обмотки А, В и С, смещенные на углы 120 градусов между собой. Обмотка А выделена желтым цветом, В - зеленым, а С - красным. Каждая обмотка выполнена такими же рамками, как и в предыдущем случае.

На картинке для каждого случая ток проходит только по одной обмотке в прямом или обратном направлении, которое показано значками «+» и «·».

При прохождении положительной полуволны по фазе А в прямом направлении ось поля ротора занимает горизонтальное положение потому, что магнитные полюса статора формируются в этой плоскости и притягивают подвижный якорь. Разноименные полюса ротора стремятся приблизиться к полюсам статора.

Когда положительная полуволна пойдет по фазе С, то якорь повернется на 60 градусов по ходу часовой стрелки. После подачи тока в фазу В произойдет аналогичный поворот якоря. Каждое очередное протекание тока в очередной фазе следующей обмотки будет вращать ротор.

Если к каждой обмотке подвести сдвинутое по углу 120 градусов напряжение трехфазной сети, то в них будут циркулировать переменные токи, которые раскрутят якорь и создадут его синхронное вращение с подведенным электромагнитным полем.



Эта же механическая конструкция успешно применяется в трехфазном шаговом двигателе . Только в каждую обмотку с помощью управления подаются и снимаются импульсы постоянного тока по описанному выше алгоритму.



Их запуск начинает вращательное движение, а прекращение в определенный момент времени обеспечивает дозированный поворот вала и остановку на запрограммированный угол для выполнения определенных технологических операций.

В обеих описанных трехфазных системах возможно изменение направления вращения якоря. Для этого надо просто поменять чередование фаз «А»-«В»-«С» на другое, например, «А»-«С»-«В».

Скорость вращения ротора регулируется продолжительностью периода Т. Его сокращение приводит к ускорению вращения. Величина амплитуды тока в фазе зависит от внутреннего сопротивления обмотки и значения приложенного к ней напряжения. Она определяет величину крутящего момента и мощности электрического двигателя.

Асинхронные электродвигатели

Эти конструкции двигателей имеют такой же статорный магнитопровод с обмотками, как и в ранее рассмотренных однофазных и трехфазных моделях. Они получили свое название из-за несинхронного вращения электромагнитных полей якоря и статора. Сделано это за счет усовершенствования конфигурации ротора.



Его сердечник набран из пластин электротехнических марок стали с пазами. В них вмонтированы алюминиевые либо медные тоководы, которые по концам якоря замкнуты токопроводящими кольцами.

Когда к обмоткам статора подводится напряжение, то в обмотке ротора электродвижущей силой наводится электрический ток и создается магнитное поле якоря. При взаимодействии этих электромагнитных полей начинается вращение вала двигателя.

У этой конструкции движение ротора возможно только после того, как возникло вращающееся электромагнитное поле в статоре и оно продолжается в несинхронном режиме работы с ним.

Асинхронные двигатели проще в конструктивном исполнении. Поэтому они дешевле и массово применяются в промышленных установках и бытовой домашней технике.




Линейные электродвигатели

Многие рабочие органы промышленных механизмов выполняют возвратно-поступательное или поступательное движение в одной плоскости, необходимое для работы металлообрабатывающих станков, транспортных средств, ударов молота при забивании свай …

Перемещение такого рабочего органа с помощью редукторов, шариковинтовых, ременных передач и подобных механических устройств от вращательного электродвигателя усложняет конструкцию. Современное техническое решение этой проблемы - работа линейного электрического двигателя.



У него статор и ротор вытянуты в виде полос, а не свернуты кольцами, как у вращательных электродвигателей.

Принцип работы заключается в придании возвратно-поступательного линейного перемещения бегуну-ротору за счет передачи электромагнитной энергии от неподвижного статора с незамкнутым магнитопроводом определенной длины. Внутри него поочередным включением тока создается бегущее магнитное поле.

Оно воздействует на обмотку якоря с коллектором. Возникающие в таком двигателе силы перемещают ротор только в линейном направлении по направляющим элементам.

Линейные двигатели конструируются для работы на постоянном или переменном токе, могут работать в синхронном либо асинхронном режиме.

Недостатками линейных двигателей являются:

    сложность технологии;

    высокая стоимость;

    низкие энергетические показатели.

: Напишите пожалуйста понятно о устройстве электродвигателей постоянного тока. Можно на примере одного из типов. Ведь с одной стороны принцип работы очень простой, а с другой, если разобрать один из электродвигателей, то там много деталей, назначение которых не очевидно. А на сайтах в начале поисковой выдачи есть только название этих деталей, в лучшем случае. Планирую с детьми собрать простой электродвигатель, чтобы это помогло им в понимании техники и они не боялись ее осваивать.

Первый этап развития электродвигателя (1821-1832) тесно связан с созданием физических приборов для демонстрации непрерывного преобразования электрической энергии в механическую.

В 1821 году М. Фарадей, исследуя взаимодействие проводников с током и магнитом, показал, что электрический ток вызывает вращение проводника вокруг магнита или вращение магнита вокруг проводника. Опыт Фарадея подтвердил принципиальную возможность построения электрического двигателя.

Для второго этапа развития электродвигателей (1833-1860) характерны конструкции с вращательным движением якоря.

Томас Дэвенпорт - американский кузнец, изобретатель, в 1833 году сконструировал первый роторный электродвигатель постоянного тока, создал приводимую им в движение модель поезда. В 1837 году он получил патент на электромагнитную машину.

В 1834 году Б. С. Якоби создал первый в мире электрический двигатель постоянного тока, в котором реализовал принцип непосредственного вращения подвижной части двигателя. 13 сентября 1838 г. лодка с 12 пассажирами поплыла по Неве против течения со скоростью около 3 км/ч. Лодка была снабжена колесами с лопастями. Колеса приводились во вращение электрическим двигателем, который получал ток от батареи из 320 гальванических элементов. Так впервые электрический двигатель появился на судне.

Испытания различных конструкций электродвигателей привели Б. С. Якоби и других исследователей к следующим выводам:

  • расширение применения электродвигателей находится в прямой зависимости от удешевления электрической энергии, т. е. от создания генератора, более экономичного, чем гальванические элементы;
  • электродвигатели должны иметь по возможности малые габариты, большую мощность ибольший коэффициент полезного действия;
  • этап в развитии электродвигателей связан с разработкой конструкций с кольцевым неявнополюсным якорем и практически постоянным вращающим моментом.

Третий этап развития электродвигателей характеризуется открытием и промышленным использованием принципа самовозбуждения, в связи с чем был окончательно осознан и сформулирован принцип обратимости электрической машины. Питание электродвигателей стало производиться от более дешёвого источника электрической энергии - электромагнитного генератора постоянного тока.

В 1886 году электродвигатель постоянного тока приобрёл основные черты современной конструкции. В дальнейшем он всё более и более совершенствовался.

В настоящее время трудно представить себе жизнь человечества без электродвигателя. Он используется в поездах, троллейбусах, трамваях. На заводах и фабриках стоят мощные электрические станки. Электромясорубки, кухонные комбайны, кофемолки, пылесосы - всё это используется в быту и оснащено электродвигателями.

Подавляющее большинство электрических машин работает по принципу магнитного отталкивания и притяжения. Если между северным и южным полюсами магнита поместить проволоку и пропустить по ней ток, то её вытолкнет наружу. Как это возможно? Дело в том, что проходя по проводнику, ток формирует вокруг себя круговое магнитное поле по всей длине провода. Направление этого поля определяют по правилу буравчика (винта).

При взаимодействии кругового поля проводника и однородного поля магнита, между полюсами магнитное поле с одной стороны ослабевает, а с другой усиливается. То есть среда становится упругой и результирующая сила выталкивает провод из поля магнита под углом 90 градусов в направлении, определяемом по правилу левой руки (правило правой руки используется для генераторов, а правило левой руки подходит только для двигателей). Эта сила называется «амперовой» и её величина определяется по закону Ампера F=BхIхL, где В – значение магнитной индукции поля; I – ток, циркулирующий в проводнике; L – длина провода.

Это явление использовали как основной принцип работы первых электродвигателей, этот же принцип используют и поныне. В двигателях постоянного тока малой мощности для создания постоянного магнитного поля применяются постоянные магниты. В электромоторах средней и большой мощности однородное магнитное поле создают с помощью обмотки возбуждения или индуктора.

Рассмотрим принцип создания механического движения с помощью электричества более подробно. На динамической иллюстрации показан простейший электромотор. В однородном магнитном поле вертикально располагаем проволочную рамку и пропускаем по ней ток. Что происходит? Рамка проворачивается и по инерции двигается какое-то время до достижения горизонтального положения. Это нейтральное положение – мёртвая точка - место, где воздействие поля на проводник с током равно нулю. Чтобы движение продолжилось, нужно добавить ещё хотя бы одну рамку и обеспечить переключение направление тока в рамке в нужный момент. На обучающем видео внизу страницы хорошо виден этот процесс.

Современный двигатель постоянного тока вместо одной рамки имеет якорь с множеством проводников, уложенных в пазы, а вместо постоянного подковообразного магнита имеет статор с обмоткой возбуждения с двумя и более полясами. На рисунке показан двухполюсный электромотор в разрезе. Принцип его работы следующий. Если по проводам верхней части якоря пропустить ток движущийся «от нас» (отмечено крестиком), а в нижней части - «на нас» (отмечено точкой), то согласно правилу левой руки верхние проводники будут выталкиваться из магнитного поля статора влево, а проводники нижней половины якоря по тому же принципу будут выталкиваться вправо. Поскольку медный провод уложен в пазах якоря, то, вся сила воздействия будет передаваться и на него, и он будет проворачиваться. Дальше видно, что когда проводник с направлением тока «от нас» провернётся вниз и станет против южного полюса создаваемого статором, то он будет выдавливаться в левую сторону, и произойдёт торможение. Чтобы этого не случилось нужно поменять направление тока в проводе на противоположное, как только будет пересечена нейтральная линия. Это делается с помощью коллектора – специального переключателя, коммутирующего обмотку якоря с общей схемой электродвигателя.

Таким образом, обмотка якоря передаёт вращающий момент на вал электромотора, а тот в свою очередь приводит в движение рабочие механизмы любого оборудования, такого как, например, станок для сетки рабицы. Хотя в этом случае используется асинхронный двигатель переменного тока, основной принцип его работы идентичен принципу действия двигателя постоянного тока – это выталкивание проводника с током из магнитного поля. Только у асинхронного электромотора вращающееся магнитное поле, а у электродвигателя постоянного тока – поле статичное.

Конструктивно все электрические двигатели постоянного тока состоят из индуктора и якоря, разделенных воздушным зазором.

Индуктор (статор) электродвигателя постоянного тока служит для создания неподвижного магнитного поля машины и состоит из станины, главных и добавочных полюсов. Станина служит для крепления основных и добавочных полюсов и является элементом магнитной цепи машины. На главных полюсах расположены обмотки возбуждения, предназначенные для создания магнитного поля машины, на добавочных полюсах - специальная обмотка, служащая для улучшения условий коммутации.


Якорь электродвигателя постоянного тока состоит из магнитной системы, собранной из отдельных листов, рабочей обмотки, уложенной в пазы, и коллектора служащего для подвода к рабочей обмотке постоянноготока.

Коллектор представляет собой цилиндр, насаженный на вал двигателя и избранный из изолированных друг от друга медных пластин. На коллекторе имеются выступы-петушки, к которым припаяны концы секций обмотки якоря. Съем тока с коллектора осуществляется с помощью щеток, обеспечивающих скользящий контакт с коллектором. Щетки закреплены в щеткодержателях, которые удерживают их в определенном положении и обеспечивают необходимое нажатие щетки на поверхность коллектора. Щетки и щеткодержатели закреплены на траверсе, связанной с корпусомэлектродвигателя.

Коллекторный движок он очень хорош. Он чертовски легко и гибко регулируется. Можно повышать обороты, понижать, механическая характеристика жесткая, момент он держит на ура. Зависимость прямая. Ну сказка, а не мотор. Если бы не одна ложка дегтя во всей этой вкусняшке - коллектор.

Это сложный, дорогой и очень ненадежный узел. Он искрит, создает помехи, забивается проводящей пылью от щеток. А при большой нагрузке может полыхнуть, образовав круговой огонь и тогда все, капец движку. Закоротит все дугой наглухо.

Но что такое коллектор вообще? Нафига он нужен? Выше я говорил, что коллектор это механический инвертор. Его задача переключать напряжение якоря туда сюда, подставляя обмотку под поток.

Коллектор в электрических машинах выполняет роль выпрямителя переменного тока в постоянный (в генераторах) и роль автоматического переключателя направления тока во вращающихся проводниках якоря (в двигателях).

Когда магнитное поле пересекается только двумя проводниками, образующими рамку, коллектор будет представлять собой одно кольцо, разрезанное на две части, изолированные одна от другой. В общем случае каждое полукольцо носит название коллекторной пластины.

Начало и конец рамки присоединяются каждый к своей коллекторной пластине. Щетки располагаются таким образом, чтобы одна из них была всегда соединена с проводником, который будет двигаться у северного полюса, а другая - с проводником, который будет двигаться у южного полюса.

Рис. 2. Упрощенное изображения коллектора

Рис. 3. Выпрямление переменного тока с помощью коллектора

Сообщим рамке вращательное движение в направлении по часовой стрелке. В момент, когда вращающаяся рамка займет положение, изображенное на рис. 3, А, в ее проводниках будет индуктироваться наибольший по величине ток, так как проводники пересекают магнитные силовые линии, двигаясь перпендикулярно к ним.

Индуктированный ток из проводника В, соединенного с коллекторной пластиной 2, поступит на щетку 4 и, пройдя внешнюю цепь, через щетку 3 возвратится в проводник А. При этом правая щетка будет положительной, а левая отрицательной.

Дальнейший поворот рамки (положение В) приведет снова к индуктированию тока в обоих проводниках; однако направление тока в проводниках будет противоположно тому, которое они имели в положении А. Так как вместе с проводниками повернутся и коллекторные пластины, то щетка 4 снова будет отдавать электрический ток во внешнюю цепь, а по щетке 3 ток будет возвращаться в рамку.

Отсюда следует, что, несмотря на изменение направления тока в самих вращающихся проводниках, благодаря переключению, произведенному коллектором, направление тока во внешней цепи не изменилось.

В следующий момент (положение Г), когда рамка вторично займет положение на нейтральной линии, в проводниках и, следовательно, во внешней цепи тока опять не будет.

В последующие моменты времени рассмотренный цикл движений будет повторяться в том же порядке. Таким образом, направление индуктированного направление тока во внешней цепи благодаря коллектору все время будет оставаться одним и тем же, а вместе с этим сохранится и полярность щеток.

Щёточный узел необходим для подвода электроэнергии к катушкам на вращающемся роторе и переключения тока в обмотках ротора. Щётка - неподвижный контакт (обычно графитовый или медно-графитовый). Щётки с большой частотой размыкают и замыкают пластины-контакты коллектора ротора. Как следствие, при работе ДПТ происходят переходные процессы, в обмотках ротора. Эти процессы приводят к искрению на коллекторе, что значительно снижает надёжность ДПТ. Для уменьшения искрения применяются различные способы, основным из которых является установка добавочных полюсов. При больших токах, в роторе ДПТ возникают мощные переходные процессы, в результате чего, искрение может постоянно охватывать все пластины коллектора, независимо от положения щёток. Данное явление называется кольцевым искрением коллектора или «круговой огонь». Кольцевое искрение опасно тем, что одновременно выгорают все пластины коллектора и срок его службы значительно сокращается. Визуально кольцевое искрение проявляется в виде светящегося кольца около коллектора. Эффект кольцевого искрения коллектора не допустим. При проектировании приводов устанавливаются соответствующие ограничения на максимальные моменты (а следовательно и токи в роторе), развиваемые двигателем.Конструкция двигателя может иметь один или несколько щеточно-коллекторных узлов.

А на дворе то уже 21 век и дешевые и мощные полупроводники сейчас на каждом шагу. Так зачем нам нужен механический инвертор если мы можем сделать его электронным? Правильно, незачем! Так что берем и заменяем коллектор силовыми ключами, а еще добавляем датчики положения ротора, чтобы знать в какой момент переключать обмотки.

А для пущего удобства выворачиваем двигатель наизнанку - гораздо проще вращать магнит или простенькую обмотку возбуждения, чем якорь со всей этой тряхомудией на борту. В качестве ротора тут выступает либо мощный постоянный магнит, либо обмотка питаемая с контактных колец. Что хоть и смахивает на коллектор, но не в пример надежней его.

И получаем что? Правильно! Бесщеточный двигатель постоянного тока aka BLDC. Все те же няшные и удобные характеристики ДПТ, но без этого мерзкого коллектора. И не надо путать BLDC с синхронными двигателями. Это совсем разные машины и разным принципом действия и управления, хотя конструктивно они ОЧЕНЬ схожи и тот же синхронник вполне может работать как BLDC, добавить ему только датчиков да систему управления. Но это уже совсем другая история. про него подробнее.

Продолжая тему двигателя постоянного тока нужно отметить, что принцип действия электродвигателя основывается на инвертировании постоянного тока в якорной цепи, чтобы не было торможения, и вращение ротора поддерживалось в постоянном ритме. Если изменить направление тока в возбуждающей обмотке статора, то, согласно правилу левой руки, изменится направление вращения ротора. То же самое произойдёт, если мы поменяем местами щёточные контакты, подводящие питание от источника к якорной обмотке. А вот если поменять «+» «-» и там и там, то направление вращения вала не изменится. Поэтому, в принципе, для питания такого мотора можно использовать и переменный ток, т.к. ток в индукторе и якоре будет меняться одновременно. На практике такие устройства используются редко.

Думаю многие из вас кто баловался с движками могли заметить, что у них есть ярко выраженный пусковой ток, когда мотор на старте может рвануть стрелку амперметра, например, до ампера, а после разгона ток падает до каких-нибудь 200мА.

Почему это происходит? Это работает противоэдс. Когда двигатель стоит, то ток который через него может пройти зависит только лишь от двух параметров - напряжения питания и сопротивления якорной обмотки. Так что предельный ток который может развить движок и на который следует рассчитывать схему узнать несложно. Достаточно замерить сопротивление обмотки двигателя и поделить на это значение напряжение питания. Просто по закону Ома. Это и будет максимальный ток, пусковой.

Но по мере разгона начинается забавная вещь, обмотка якоря движется поперек магнитного поля статора и в ней наводится ЭДС, как в генераторе, но направлена она встречно той, что вращает двигатель. И в результате, ток через якорь резко снижается, тем больше, чем выше скорость.

А если движок дополнительно еще подкручивать по ходу, то противоэдс будет выше питания и движок начнет вкачивать энергию в систему, став генератором.


Что касается электрической схемы включения двигателя, то их несколько и они показаны на рисунке. При параллельном соединении обмоток, обмотка якоря делается из большого количества витков тонкой проволоки. При таком подключении коммутируемый коллектором ток будет значительно меньше из-за большого сопротивления и пластины не будут сильно искрить и выгорать. Если делать последовательное соединение обмоток индуктора и якоря, то обмотка индуктора делается из провода большего диаметра с меньшим количеством витков, т.к. весь якорный ток устремляется через статорную обмотку. При таких манипуляциях с пропорциональным изменением значений тока и количества витков, намагничивающая сила остаётся постоянной, а качественные характеристики устройства становятся лучше.

На сегодняшний день двигатели постоянного тока мало используются на производстве. Из недостатков этого типа электрических машин можно отметить быстрый износ щёточно-коллекторного узла. Преимущества – хорошие характеристики запуска, лёгкая регулировка частоты и направления вращения, простота устройства и управления.

В настоящее время двигатели постоянного тока независимого возбуждения, управляемые тиристорными преобразователями, используются в промышленных электроприводах.’Эти при­воды обеспечивают регулирование скорости в широком диапазо­не. Регулирование скорости вниз от номинальной осуществляется изменением напряжения на якоре, а вверх - ослаблением потока возбуждения. Ограничения, по мощности и скорости обусловлены свойствами используемых двигателей, а не полупроводниковых приборов. Тиристоры могут соединяться последовательно или па­раллельно, если они имеют недостаточно высокий. класс по напря­жению или току. Ток якоря и момент ограничены перегрузочной способностью двигателя по нагреву.

Принцип работы:

Сборка двигателя постоянного тока ПО ДЕТАЛЯМ :

Для любопытных могу еще подробно рассказать про или например что такое . Ну и совсем для жаждущих - подробно про . Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -