Как сделать катушку с батарейкой на физику. Катушка тесла из хозмага

Изобретенная в 1891 году Николой Тесла, катушка Тесла была создана для проведения экспериментов по изучению высоковольтных разрядов. Это устройство состоит из источника питания, конденсатора, двух катушек, между которыми будет циркулировать заряд, и двух электродов, между которыми будет проскакивать разряд. Катушку Тесла, нашедшую применение в великом множестве устройств (от ускорителя частиц и телевидения до детских игрушек) можно сделать дома из радиодеталей.

Шаги

Часть 1

Проектирование катушки Тесла

    Определитесь с размером и расположением катушки Тесла перед тем, как браться за дело. Вы можете сделать настолько большую катушку Тесла, насколько позволяет ваш бюджет; но учтите, создаваемые катушкой искровые разряды разогревают воздух, который сильно расширяется (в результате создавая гром). Электромагнитное поле, создаваемое катушкой, может вывести из строя электроприборы, так что лучше расположить ее в отдаленном месте, вроде гаража или мастерской.

    • Чтобы выяснить, насколько длинную дугу вы сможете получить, или какой мощности блок питания потребуется, разделите расстояние между электродами в сантиметрах на 4,25 и возведите в квадрат – получите необходимую мощность в Ваттах. Соответственно, чтобы найти расстояние между электродами, умножьте квадратный корень мощности на 4,25. Катушка Тесла, способная создать дугу длинной 1,5 метра, потребует 1 246 Вт. Катушка с блоком питания на 1кВт может создать искру длиной 1,37 метра.
    • Ознакомьтесь с терминологией. Создание катушки Тесла потребует от вас понимания определенных научных терминов и знания единиц измерения. Вам будет необходимо понимать их значение и смысл, чтобы сделать все правильно. Здесь представлена некоторая информация, которая вам пригодится:

      • Электрическая емкость – это способность накапливать и удерживать электрический заряд определенного напряжения. Устройство, созданное для накапливания электрического заряда, называется конденсатор. Единица измерения электрического заряда – фарад (обозначается "Ф"). Фарад можно выразить как 1ампер секунда (Кулон), умноженная на вольт. Зачастую емкость измеряется в долях фарада, таких как микрофарад (мФ) – миллионная доля фарада, пикофарад (пкФ) – триллионная доля фарада.
      • Самоиндукция – это явление возникновения ЭДС в проводнике при изменении проходящего через него тока. Высоковольтные провода, по которым течет низкоамперный ток, обладают высокой самоиндукцией. Единица измерения самоиндукции – генри (сокращенно "Гн"). Один генри соответствует цепи, в которой изменение тока со скоростью один ампер в секунду создает ЭДС 1Вольт. Индуктивность часто измеряют в долях генри: миллигенри ("мГн"), тысячная доля генри или микрогенри ("мкГн"), миллионная часть генри.
      • Резонансная частота – это частота, на которой потери на передачу энергии минимальны. Для катушки Тесла это частота минимальных потерь при передачи энергии между первичной и вторичной обмотками. Частота измеряется в герцах (сокращенно "Гц"), определяется как один цикл в секунду. Зачастую, резонансная частота измеряется в килогерцах ("кГц"), килогерц равняется 1000 Гц.
    • Соберите все необходимые детали. Вам понадобится: трансформатор, первичный конденсатор высокой емкости, разрядник, первичная катушка низкой индуктивности, вторичная катушка с высокой индуктивностью, вторичный конденсатор с небольшой емкостью и устройство для гашения высокочастотных импульсов, которые возникают при высоких напряжениях во время работы катушки Тесла. Более подробную информацию о необходимых деталях вы найдете в разделе статьи "Изготовление катушки Тесла".

      • Источник питания должен через дроссель питать первичный или накопительный колебательный контур, который состоит из первичного конденсатора, первичной катушки и разрядника. Первичная катушка должна располагаться рядом с вторичной катушкой, которая является элементом вторичного колебательного контура, но контуры не должны быть соединены проводами. Как только вторичный конденсатор накопит достаточный заряд, он будет испускать электрические разряды в воздух.

Часть 2

Изготовление катушки Тесла
  1. Выберите трансформатор. Ваш питающий трансформатор определяет, насколько большую катушку вы сможете сделать. Большинство подобных катушек работает от трансформаторов, которые могут выдавать при напряжении 5,000-15,000 вольт ток 30-100 миллиампер. Вы можете поискать трансформатор на местном радиорынке, купить через интернет или снять с неоновой вывески.

    Сделайте первичный конденсатор. Его можно сделать из множества маленьких конденсаторов, соединенных в цепь, которые будут накапливать равные доли заряда в первичном контуре. Для этого все конденсаторы должны иметь одинаковую емкость. Такой конденсатор называется составным.

    • Конденсаторы малой емкости и нагрузочные резисторы можно приобрести в магазине радиодеталей или снять керамические конденсаторы со старого телевизора. Вы также можете сделать конденсаторы из алюминиевой фольги и полиэтиленовой пленки.
    • Чтобы добиться максимальной мощности, первичный конденсатор должен полностью заряжаться каждые пол цикла подачи энергии. Для 60 Гц источника питания, заряд должен происходить 120 раз в секунду.
  2. Спроектируйте разрядник. Если вы хотите сделать одиночный разрядник, вам нужно использовать провод минимум 6 миллиметров толщиной, чтобы электроды могли выдерживать тепло, выделяемое во время разряда. Вы также можете сделать многоэлектродный разрядник, роторный разрядник или охлаждать электроды, обдувая воздухом. Для этих целей можно приспособить старый пылесос.

    Сделайте обмотку первичной катушки. Сама катушка будет сделана из проволоки, но вам потребуется форма, вокруг которой наматывать проволоку. Следует использовать лакированную медную проволоку, которую вы сможете купить в магазине радиодеталей или снять с ненужного электроприбора. Форма, вокруг которой вы будете обматывать проволоку, должна быль либо цилиндрической, например картонная или пластиковая трубка, либо коническая, например, старый абажур.

    • Длина проволоки будет определять индуктивность первичной катушки. Первичная катушка должна обладать низкой индуктивностью, так что она будет состоять из небольшого количества витков. Проволока для первичной катушки не обязательно должна быть сплошной, вы можете скреплять секции, чтобы регулировать индуктивность походу сборки.
  3. Соберите первичный конденсатор, разрядник и первичную катушку в одну цепь. Эта цепь образует первичный колебательный контур.

    Сделайте вторичную катушку индуктивности. Как и для первичной катушки, вам нужна цилиндрическая форма, на которую вы будете наматывать проволоку. Вторичная катушка должна иметь такую же резонансную частоту, как и первичная, чтобы избежать потерь. Вторичная катушка должна быть длиннее/выше, чем первичная, так как должна обладать большей индуктивностью и препятствовать разряду вторичного контура, который может привести к тому, что первичная катушка сгорит.

    • Если у вас не хватает материалов сделать достаточно большую вторичную катушку, вы можете сделать разрядный электрод, чтобы защитить первичный контур, но это приведет к тому, что большая часть разрядов будет приходиться на этот электрод и их не будет видно.
  4. Сделайте вторичный конденсатор. Вторичный конденсатор, или терминал, должен быть скругленной формы, две самые популярные – тор (кольцо в форме бублика) и сфера.

    Соедините вторичный конденсатор и вторичную катушку. Это будет вторичным колебательным контуром.

    • Ваш вторичный контур должен быть заземлен отдельно от вашей проводки по дому, которая питает источник катушки Тесла. Это необходимо, чтобы избежать блуждания высоковольтных токов по проводке дома и нанесению вреда подключенным электроприборам. Сделать отдельное заземление можно, вогнав металлический штырь в землю.
  5. Сделайте импульсные дроссели. Дроссели – это небольшие катушки, которые предотвращают поломку источника питания разрядником. Вы можете сделать такую катушку, намотав медную проволоку вокруг тонкой трубки, например, обычной шариковой ручки.

  6. Соберите все компоненты вместе. Разместите первичный и вторичный колебательные контуры рядом и присоедините питающий трансформатор к первичному контуру через дроссели. Как только вы включите трансформатор, катушка Тесла готова к работе.

    • Если первичная катушка большого диаметра, вторичная может быть размещена внутри нее.

У меня эта статья уже была когда-то на сайте, посвященном гениальному Никола Тесле. Но сайта больше нет, мне просто рук не хватало на все. Однако же, там были интересные статьи, они сохранились, и я их потихоньку буду публиковать здесь.

Публикуемая статья предназначена ТОЛЬКО ДЛЯ ОЗНАКОМЛЕНИЯ!

Сразу хочу расставить точки над «и», данное устройство работает с высокими напряжениями, поэтому соблюдение элементарных правил техники безопасности ОБЯЗАТЕЛЬНО! Несоблюдение правил ведет к серьёзным травмам, помните это!

Еще хочу отметить, что основную опасность в этом устройстве представляет ИСКРОВИК (разрядник), который в ходе своей работы является источником излучений широкого спектра в том числе и рентгеновского, помните об этом!

Расскажу кратко о конструкции «моего» трансформатора Тесла, в простонародье «катушка тесла». Это устройство выполнено на простой элементной базе, доступной каждому желающему, Блок-схема устройства приведена ниже.

В этой статье я расскажу о собранном мной устройстве-трансформаторе Тесла и об интересных эффектах, которые в нём наблюдались в процессе его работы.

Как видите я не стал изобретать велосипед и решил придерживаться классической схемы трансформатора Тесла, единственное что добавлено в классическую схему -это электронный преобразователь напряжения, роль которого повысить напряжение с 12 Вольт до 10 тысяч вольт!

В высоковольтной части схемы применяются следующие элементы: Диод VD является высоковольтным марки 5ГЕ200АФ- он имеет высокое сопротивление-это очень важно! Конденсаторы С1 и С2 имеют номинал 2200пФ каждый рассчитан на напряжение 5 кВ. В итоге мы получаем суммарную ёмкость 1100пФ и напряжение накапливаемое 10 кВ, что очень для нас хорошо!

Хочу заметить что емкость подбирается опытным путём, от неё зависит время длительности импульса в первичной катушки, ну и конечно от самой катушки. Время импульса должно быть меньше времени жизни электронных пар в проводнике первичной катушки трансформатора «Тесла», иначе мы будем иметь низкий эффект и энергия импульса будет тратиться на нагрев катушки, что нам не нужно! Ниже показана собранная конструкция устройства.

Особого внимания заслуживает конструкция разрядника «искровика», большинство современных схем трансформатора тесла имеют особую конструкцию искровика с приводом электродвигателя, где частота разрядов регулируется скоростью вращения, но я решил не придерживаться этой тенденции, так как там есть много отрицательных моментов. Я пошел по классической схеме разрядника. Технический рисунок разрядника приведён ниже.

Дешевый и практичный вариант не шумит и не светится, объясню почему. Данный разрядник выполнен из пластин меди толщиной 2-3 мм размерами 30х30 мм (для выполнения роли радиатора, так как дуга является источником тепла) с резьбой под болты в каждой пластине. Для устранения раскручивания болта при разряде и осуществления хорошего контакта необходимо применить пружину между болтом и пластиной.

Для гашения шума при разряде сделаем специальную камеру, где будет происходить горение дуги, у меня камера сделана из куска трубы полиэтиленовой водопроводной (которая не содержит армировку) кусок трубы зажимается плотно межу двумя пластинами и желательно использовать герметизацию, например у меня специальный двусторонний скотч для утепления. Регулировка зазора выполняется вкручиванием и выкручиванием болта, позже объясню для чего.

Первичная катушка устройства. Первичная катушка устройства выполнена и медного провода типа ПВ 2,5мм.кв и тут возникает вопрос: «Для чего такой толстый провод?» Объясняю. Трансформатор Тесла это особое устройств, можно сказать аномальное, которое не относится по типу к обычных трансформаторам, где совсем другие законы.

У обычного силового трансформатора важным значением в его работе является самоиндукция (противо ЭДС) которая компенсирует часть тока, при нагрузке обычного силового трансформатора противо ЭДС понижается и соответственно повышается ток, если мы уберем противо ЭДС с обычных трансформаторов, то они вспыхнут как свечки.

А в трансформаторе Тесла всё наоборот: самоиндукция — наш враг! Поэтому чтобы бороться с этим недугом, мы применяем толстый провод у которого маленькая индуктивность, а соответственно маленькая самоиндукция. Нам нужен мощный электромагнитный импульс и мы его получаем применяя данный тип катушки. Первичная катушка выполнена в виде спирали Архимеда в одной плоскости в количестве 6 витков, максимальный диаметр большого витка в моей конструкции 60 мм.

Вторичная катушка устройства- обычная катушка намотанная на полимерной водопроводной трубе (без армировки) диаметром 15 мм. Намотка катушки осуществляется эмаль проводом 0.01мм.кв виток в витку, в моём устройстве количество витков составляет 980 шт. Намотка вторичной катушки требует терпения и выдержки, у меня на это ушло около 4х часов.

Итак, устройство собрано! Теперь немного о регулировки устройства, устройство представляет собой два LC контура — первичный и вторичный! Для правильной работы устройства -необходимо ввести систему в резонанс, а именно в резонанс контуры LC.

Фактически, система вводится в резонанс автоматически, из-за широкого спектра частот электрической дуги, некоторые из которых совпадают с импедансом системы, так что нам остаётся сделать так, чтобы оптимизировать дугу и выровнять частоты по мощности в ней.

Делается это очень просто — регулируем зазор разрядника. Регулировку разрядника нужно производить до появления наилучших результатов в виде длинны дуги. Изображение работающего устройства расположено ниже.

Итак устройство собрали и запустили- теперь оно у нас работает! Теперь мы можем производить свои наблюдения и изучать их. Хочу сразу предупредить: хоть токи высокой частоты являются безвредными для организма человека (в плане трансформатора Тесла), но световые эффекты вызванные ими могут влиять на роговицу глаза и вы рискуете получить ожог роговицы, так как спектр излучаемого света смещен в сторону ультрафиолетового излучения.

Еще одна опасность, которая подстерегает при использовании трансформатора Тесла — это переизбыток озона в крови, которая может повлечь за собой головные боли, так как при работе устройство производятся большие порции этого газа, помните это!

Приступим к наблюдению за работающей катушкой Тесла. Наблюдения лучше всего производить в полной темноте, так вы более всего ощутите красоту всех эффектов которые просто поразят необычностью и таинственностью. Я производил наблюдения в полной темноте, ночью и часами мог любоваться свечением, которое производило устройство, за что и поплатился на следующее утро: у меня болели глаза как после ожога от электросварки, но это мелочи, как говориться: «наука требует жертв».

Как только я в первый раз включил устройство я заметил красивое явление- это светящийся фиолетовый шар который находился посередине катушки, в процессе регулировки искрового промежутка я заметил что шар смещается в верх или в низ в зависимости от длинны промежутка, единственное на данный момент моё объяснение явление импеданса во вторичной катушке, что и вызывает данный эффект.

Шар состоял из множества фиолетовых микро дуг, который выходили из одной области катушки и входили в другую, образовывая при этом сферу. Так как вторичная катушка устройства не заземлена, то наблюдался интересный эффект — фиолетовые свечения по обоим концам катушки.

Я решил проверить как себя ведёт устройство при замкнутой вторичной катушке и заметил еще одну интересную вещь: усиление свечения и увеличение дуги происходящей от катушки во время прикосновения к ней — эффект усиления налицо.

Повторение эксперимента Теслы, в котором светятся газоразрядные лампы в поле трансформатора. При вводе обычной энергосберегающей газоразрядной лампы в поле трансформатора -она начинает светится, яркость свечение составляет примерно 45% от полной её мощности это примерно 8 Вт, при этом потребляемая мощность всей системы составляет 6 Вт.

Для заметки: вокруг работающего устройства возникает высокочастотное электрическое поле которое имеет потенциал примерно 4кВ/см.кв. Так же наблюдается интересный эффект:так называемый щеточный разряд, светящийся фиолетовый разряд в виде густой щётки с частыми иглами размером до 20мм, напоминающие пушистый хвост животного.

Этот эффект вызван высокочастотными колебаниями молекул газа в поле проводника, в процессе высокочастотных колебаний происходит разрушение молекул газа и образование озона, а остаточная энергия проявляется в виде свечения в ультрафиолетовом диапазоне.

Наиболее яркое проявлением эффекта щетки возникает при использовании колбы с инертным газом, в моём случае использовал колбу от газоразрядной лампы ДНАТ, в которой содержится Натрий (Na) в газообразном состоянии, при этом возникает яркий эффект щетки, который похож на горение фитиля только при очень частых образованиях искр, данный эффект очень красив.

Результаты проведённой работы: Работа устройства сопровождается различными интересными и красивыми эффектами, которые в свою очередь заслуживают более тщательного изучения, известно что устройство генерирует электрическое поле высокой частоты, что является причиной образования большого количества озона, как побочный продукт ультрафиолетовое свечение.

Особая конфигурация устройства даёт повод задуматься о принципах его работы, есть только догадки и теории о работе данного устройства, но объективной информации так и не было выдвинуто, так же как и не было досконального изучения данного устройства.

В настоящий момент трансформатор Тесла собирается энтузиастами и используется лишь для развлечения по большей части, хотя устройство по моему мнению является ключем для понимания фундаментальной основы вселенной, которую знал и понимал Тесла.

Использование трансформатора Тесла для развлечения — это все равно что забивать гвозди микроскопом… Сверх единичный эффект устройства..? возможно…, но у меня пока нет нужного оборудования для определения данного факта.

Еще раз предупреждаю об опасности самостоятельного изготовления прибора!

Статья не моя, вот

Трансформатор, увеличивающий напряжение и частоту во много раз, называется трансформатором Тесла. Энергосберегающие и люминесцентные лампы, кинескопы старых телевизоров, зарядка аккумуляторов на расстоянии и многое другое создано благодаря принципу работы этого устройства. Не будем исключать его использование в развлекательных целях, ведь «трансформатор Тесла» способен создавать красивые фиолетовые разряды – стримеры, напоминающие молнию (рис. 1). В процессе работы образуется электромагнитное поле, способное воздействовать на электронные приборы и даже на организм человека, а при разрядах в воздухе происходит химический процесс с выделением озона. Чтобы сделать трансформатор Тесла своими руками, необязательно иметь широкие познания в области электроники, достаточно следовать этой статье.

Составные части и принцип работы

Все трансформаторы Тесла ввиду похожего принципа работы состоят из одинаковых блоков:

  1. Источник питания.
  2. Первичный контур.

Источник питания обеспечивает первичный контур напряжением необходимой величины и типа. Первичный контур создаёт колебания высокой частоты, генерирующие во вторичном контуре резонансные колебания. В результате на вторичной обмотке образуется ток большого напряжения и частоты, который стремится создать электрическую цепь через воздух - образуется стример.

От выбора первичного контура зависит тип катушки Тесла, источник питания и размер стримера. Остановимся на полупроводником типе. Он отличается простой схемой с доступными деталями, и маленьким питающим напряжением.

Подбор материалов и деталей

Произведём поиск и подбор деталей к каждому вышеперечисленному узлу конструкции:


После намотки изолируем вторичную катушку краской, лаком или другим диэлектриком. Это предотвратит попадание в неё стримера.

Терминал – дополнительная ёмкость вторичного контура, подключённая последовательно. При малых стримерах в нем нет необходимости. Достаточно вывести конец катушки на 0,5–5 см вверх.

После того, как собрали все необходимые детали для катушки Тесла, приступаем к сборке конструкции своими руками.

Конструкция и сборка

Сборку делаем по простейшей схеме на рисунке 4.

Отдельно устанавливаем источник питания. Детали можно собрать навесным монтажом, главное исключить замыкание между контактами.

При подключении транзистора важно не перепутать контакты (рис. 5).

Для этого сверяемся со схемой. Плотно прикручиваем радиатор к корпусу транзистора.

Собирайте схему на диэлектрической подложке: кусок фанеры, пластиковый поднос, деревянная коробка и др. Отделяем схему от катушек диэлектрической пластиной или доской, с миниатюрным отверстием для проводов.

Закрепляем первичную обмотку так, чтобы предотвратить падение и касание со вторичной обмоткой. В центре первичной обмотки оставляем место для вторичной катушки, с учётом того, что оптимальное расстояние между ними 1 см. Каркас использовать необязательно – достаточно надёжного крепления.

Устанавливаем и закрепляем вторичную обмотку. Делаем необходимые соединения согласно схеме. Посмотреть на работу изготовленного трансформатора Тесла можно на видео представленном ниже.

Включение, проверка и регулировка

Перед включением уберите электронные устройства подальше от места испытания, чтобы исключить их поломку. Помните об электробезопасности! Для успешного запуска по порядку выполняем следующие пункты:

  1. Выставляем переменный резистор в среднее положение. При подаче питания, убеждаемся в отсутствии повреждений.
  2. Визуально проверяем наличие стримера. Если он отсутствует, подносим к вторичной катушке люминесцентную лампочку или лампу накаливания. Свечение лампы подтверждает работоспособность «трансформатора Тесла» и наличие электромагнитного поля.
  3. Если устройство не работает, в первую очередь меняем местами выводы первичной катушки, а уже потом проверяем транзистор на пробой.
  4. При первом включении следите за температурой транзистора, при необходимости подключите дополнительное охлаждение.

Отличительной особенностью мощного трансформатора Тесла являются большое напряжение, большие габариты устройства и способ получения резонансных колебаний. Немного расскажем о том, как работает и как сделать трансформатор Тесла искрового типа.

Первичный контур работает на переменном напряжении. При включении, происходит заряд конденсатора. Как только конденсатор заряжается по максимуму, происходит пробой разрядника – устройства из двух проводников с искровым промежутком, наполненным воздухом или газом. После пробоя, образуется последовательная цепь из конденсатора и первичной катушки, называемая LC контуром. Именно этот контур создаёт высокочастотные колебания, которые создают во вторичной цепи резонансные колебания и огромное напряжение (рис. 6).

При наличии необходимых деталей, мощный трансформатор Тесла можно собрать своими руками даже в домашних условиях. Для этого достаточно внести изменения в маломощную схему:

  1. Увеличить диаметры катушек и сечение провода в 1,1 – 2,5 раза.
  2. Добавить терминал в форме тороида.
  3. Поменять источник постоянного напряжения на переменный с высоким повышающим коэффициентом, выдающим напряжение 3–5 кВ.
  4. Изменить первичный контур согласно схеме на рисунке 6.
  5. Добавить надёжное заземление.

Искровые трансформаторы Тесла могут достигать мощности до 4,5 кВт, следовательно, создавать стримеры больших размеров. Наилучший эффект получается при достижении одинаковых показателей частоты обоих контуров. Реализовать это можно расчётом деталей в специальных программах – vsTesla, inca и другие. Скачать одну из русскоязычных программ можно по ссылке: http://ntesla.at.ua/_fr/1/6977608.zip .

После успехов с обычными высоковольтными генераторами, решено было построить что-то действительно большое. Конечно, это была DRSSTC .

Справка: QCW DRSSTC — особый тип транзисторных катушек Тесла, характеризующийся плавной накачкой: постепенным и плавным (а не резким как в обычных катушках) нарастанием напряжения и тока первичного контура.

Выбор пал на транзисторы Mitsubishi Electronic IGBT - CM300DY24HA, с номинальными параметрами: максимальный непрерывный ток - 300 A, максимум напряжения К-Э 1200 V. Тесты изготовителей tesla в США показали, что эти транзисторы способны выдерживать непрерывный импульс 4 кА (они взрываются примерно на 5 кА в результате насыщения) и могут безопасно использоваться с импульсными токами до 2 кА. Транзисторы защищены ТВС, способными рассеивать около 12 кВт, а также 5 мкФ / 1 кВ на электропитании.

Принципиальная схема DRSSTC

А это структурная схема генератора:

Технические характеристики Теслы

  • В первичной цепи установлен ограничитель тока на 1400 А.
  • Потребление энергии в сети около 20 А.
  • Резонансная частота составляет 42 кГц.
  • Предельная длина искры 3 метра.
  • Тесла имеет более 2 метра в высоту.
  • Диаметр верхнего тороида - около 1 метра.

Разумеется ни одна DRSSTC не может функционировать без хорошего резонансного конденсатора, и именно там появилась самая большая проблема - чем выше емкость, тем лучше эффект по искре, но и тоньше кошелек... Минимальное напряжение пробоя составляет 8 кВ, однако чем больше, тем лучше. После многих расчетов решено было принять параметры 600nF / 10kV, а это означает необходимость покупки 100 конденсаторов CDE942C20P15kF. Они не единственные конденсаторы подходящие для этой цели, но другие еще дороже.

Следующим шагом было проектирование механической части, расположение ключевых элементов и т. д. Первичка вызвала немало проблем. Одной из концепций была коническая обмотка, но с другой стороны, из-за гораздо лучшего распределения поля остановились на плоской. Обмотка выполнена из мягкой меди диаметром 15 мм с толщиной стенки 1 мм.

Другим важным элементом катушки Тесла является вторичная обмотка. Это классическое решение, которое заключается в использовании в качестве формы под неё канализационной трубы из ПВХ диаметром 200 мм и высотой 1 м. Катушка содержит около 2300 витков проволоки 0,4 мм. Это почти 2 кг меди и около 1,5 км кабеля. Обмотка традиционно залита лаком.

Тороиды представляют собой классическую конструкцию, изготовленную из вентиляционных гофрированных труб. Использование двух тороидов улучшает распределение электрического поля вокруг обмоток, благодаря чему искры неохотно идут внутрь. Также использовались защитные катушки в количестве 2 штуки - одна выше, другая - под первичной плоскостью. Верхняя катушка провода является временной.

Нижняя часть корпуса электроники будет покрыта сеткой, пока закрыта только лицевая сторона, чтобы иметь легкий доступ к деталям во время ввода Теслы в эксплуатацию.

Разумеется, для мощных транзисторов требуется массивный радиатор. Он также охлаждается двумя мощными 120-миллиметровыми вентиляторами. Хотя общее количество выделяемого тепла не велико - большой радиатор и кулеры нужны обязательно, как результат - во время работы радиатор практически холоден.

Следующий ключевой элемент - силовые фильтрующие конденсаторы. Поскольку устройство работает с мощным импульсом, для импульсной работы требуются высоковольтные электролиты значительной мощности и низким импедансом (low esr).

Получение постоянного напряжения 650 В DC несложно, достаточно удвоить напряжение сети 220 В.

Необходимо поставить диодный мост с напряжением выше 320 В (после выпрямления), в частности около 600 В постоянного тока, также были необходимы электролиты способные работать с таким напряжением, однако самое высокое напряжение, которое когда-либо встречалось на любом электролите, было 500 В, но и этого все еще недостаточно. Поэтому необходимо последовательно подключать два электролитических конденсатора, что означает половину емкости и потребность сразу в четырех конденсаторах.

Контроллер управляет промежуточным мостом на MOSFET. Однако на этот раз промежуточный мост питается стабилизированным напряжением 80 В, которое выдает специально сконструированный трансформатор, управляющий затворами транзисторов IGBT. Трансформация этого трансформатора составляет 4: 1: 1: 1: 1. Эта конструкция позволяет получить типичные 20V на затворах, и его применение направлено на значительное сокращение времени их перезарядки.

Молнии безумно громкие и невероятно яркие, но красота требует жертв, поэтому расходы превышают 1000 долларов.

Обсудить статью БОЛЬШАЯ САМОДЕЛЬНАЯ КАТУШКА ТЕСЛА DRSSTC

Содержание:

Заметный импульс в развитии электротехники приходится на первые годы ХХ века, в это время общество и промышленность оценивали инновационные предложения от изобретателей. По мнению специалистов, многие идеи могут развиваться еще несколько десятков и даже сотню лет. Много секретов хранит история, в том числе инновационные идеи и проекты Николы Теслы - это имя стало загадкой для многих поколений людей.

Одно из известных изобретений Теслы - это созданный им трансформатор, чаще его описывают как катушку Теслы (КТ). Демонстрация его работы никого не оставляет равнодушным, можно визуально увидеть электрические разряды, которые могут иметь большие значения. Простота конструкции и получаемый результат всегда вызывают желание сделать подобную катушку самостоятельно.

Резонансный трансформатор Теслы, который в демонстрационном режиме может показать, какими манипуляциями с электричеством и какими методиками на тот период времени владел изобретатель, до настоящего момента ставит традиционную науку в тупик.

Катушка Николы Теслы - это аппарат, с помощью которого получают токи высокой частоты. Реализовывается при помощи первичной и вторичной обмотки, но первичная обмотка получает питание на частоте резонанса вторичной обмотки, при этом напряжение на выходе возрастает в десятки раз.

Тесла в 1896 году запатентовал данное изобретение, которое состоит из следующих элементов:

  • обмотка первичная из медного провода сечением не меньше 6 миллиметров квадратных, которая выполнена в виде 6–7 витков;
  • обмотка вторичная, она реализуется на диэлектрик проводом 0,3 миллиметра квадратных и до 800–1000 витков;
  • разрядное устройство;
  • емкость (конденсатор);
  • элемент излучения искры.

Основное отличие КТ от всех других трансформаторов в том, что Никола Тесла в своем изобретении не применял для сердечника ферритовые сплавы, и мощность получаемого устройства зависит только от электрической проницаемости воздуха. Смысл идеи - это создание колебательного контура, который можно сделать, используя несколько методик:

  • с помощью частотных колебаний - это генератор, реализованный на разрядном элементе;
  • при помощи ламп - генератор колебаний;
  • используя элементы радиотехники - транзисторы.

Цель изобретения

По мнению специалистов, Тесла изобретал трансформатор для решения глобального вопроса передачи электрической энергии из одного пункта в другой без применения проводов. Для того чтобы получилась задуманная изобретателем передача энергии при помощи эфира, необходимо на двух удаленных точках иметь по одному мощному трансформатору, которые работали бы на одной частоте в резонансе.

Если проект реализовать, тогда не понадобятся гидроэлектростанции, мощные ЛЭП, наличие кабельных линий, что, конечно, противоречит монопольному владению электрической энергией разными компаниями. С проектом Николы Теслы каждый гражданин общества мог бесплатно воспользоваться электричеством в нужный момент в любом месте, где бы он ни находился. С точки зрения бизнеса эта система нерентабельна, так как она не окупится, ведь электричество становится бесплатным, именно по этой причине патент №645576 до сих пор ожидает своих инвесторов.

Как работает катушка Теслы

Для лучшего понимания работы резонансного трансформатора специалисты рекомендуют посмотреть на его работу, так как простая схема катушки предназначается для создания стримера. Другими словами, происходит потеря энергии, которая переходит на конденсатор, если его подключить, а без него из конца высоковольтной обмотки вылетает фиолетового цвета искра (стример). Вокруг появившегося стримера возникает поле, в которое можно поместить люминесцентную лампу, и она будет светиться, не подключенная визуально ни к какому источнику электрической энергии.

Когда не используется конденсатор, лампа светится ярче, некоторые специалисты устройство Теслы называют игрушкой с захватывающими визуальными эффектами. Всегда возникает желание сделать такой прибор самостоятельно, в нем реализовываются разные физические эффекты при помощи двух обмоток. На первичную обмотку подается переменное напряжение, она создает поток, при помощи которого энергия переходит на вторичную обмотку. По такому же принципу работает большинство трансформаторов.

Основные качественные характеристики КТ:

  • частота во вторичном контуре;
  • коэффициент передачи обеих обмоток;
  • добротность.

Принцип работы простыми словами

Принцип работы катушки Теслы лучше понять, если всю работу устройства сравнить с качелями - так можно подойти к объяснению накапливания энергии, когда человек, он же оператор, представляется первичной катушкой, а ход качели - электротоком в обмотке №2. Высота подъема есть разность потенциалов.

В этом примере оператор начинает раскачивать качели, иными словами, передавать энергию. За пару качков качели поднимаются высоко, это соответствует большой разности потенциалов, наступает момент переизбытка энергии, и в результате этого появляется фиолетовый стример.

Оператор должен раскачивать качели с определенным тактом, который задается частотой резонанса, иными словами, количеством колебаний в одну секунду. Траектория движения качелей имеет длину - это коэффициент связи. Когда раскачиваем качели на длину руки и быстро, он равняется единице. Катушка Теслы - это тот же трансформатор, имеющий повышенный коэффициент передачи.

Когда оператор раскачивает качели, не удерживая их рукой, это можно ассоциировать с малыми связями - чем дольше раскачивать, тем дальше они уходят. Для быстрого накопления энергии коэффициент связи должен быть большой, но на выходе уменьшается разность потенциалов.

Качественную характеристику добротности можно ассоциировать с трением качелей. Зависимость прямая: при большом трении добротность - незначительная величина. Наивысшее значение добротности будет в самой высокой точке раскачивания, когда появляется наиболее высокое значение стримера.

Основные виды

Катушка Николы Теслы изначально имела одно исполнение - с разрядником, но со временем элементная база расширилась, появилось много видов реализации идеи великого изобретателя, и все они называются катушками его имени. Их представляют в аббревиатуре, в английской редакции.

Схема трансформатора Теслы с разрядником - это начальная конструкция, которая обладает незначительной мощностью, если используются два провода. Для большей мощности применяется вращающийся разрядник для мощного стримера.

Катушка трансформатора Теслы, реализованного на радиолампе - это схема, работающая без сбоев, показывающая мощные стримеры, которые применяются для высоких частот.

Простые в управлении катушки, но по принципу работы такие же, как трансформатор Теслы, реализованы при помощи транзисторов. Есть много вариантов таких катушек:

Сложные для настройки с применением полупроводниковых ключей две резонансные катушки, с небольшой длиной фиолетового стримера, по сравнению с разрядником, характеризуются плохой управляемостью:

Для улучшения управляемости КТ были сделаны прерыватели, с их помощью тормозился процесс, и появлялось время на зарядку емкостных накопителей (конденсаторов). Таким решением удлиняется длина разряда.

Элементы в разных конструкциях

Специалисты для самостоятельного создания КТ сделали базу общих элементов, которые могут применяться в разных реализациях резонансного трансформатора:

  1. Тороид, имеющий три основных опции:
  • снижение резонанса;
  • накопление величины заряда: когда тороид большой, энергии больше;
  • организовывается поле статического электричества, которое отталкивается от вторичной обмотки. Сама опция реализуется вторичной обмоткой, но тороид помогает ей в этом, поле отталкивает стример, не дает пробить ему по второй обмотке.

Применять тороид лучше в катушках с прерывателем, в которых происходит накачивание импульсивно. Рекомендуется соблюдение условия: значение диаметра тороида должно быть в два раза выше значения диаметра вторичной обмотки. Изготавливается тороид из гофры или аналогичных ей материалов.

Тороид на схеме:

  1. Основная составляющая всей конструкции - вторичная катушка (обмотка), она должна быть в диаметре больше первичной в пять раз. Провод берется с таким сечением, чтобы вошло в обмотку не меньше 900–1000 витков, плотно намотанных, с лаковым покрытием.
  2. Из ПВХ-материала, который применяется в быту для сантехники, изготавливается каркас.
  3. Защитное кольцо, функциональное назначение которого - оградить первичную обмотку от попадания в нее стримера.
  4. Обмотка первичная, обычно ее изготавливают из конденсаторной, медной трубки, провод должен иметь большое сечение.
  5. Коэффициент связи влияет на расстояние между обмотками: чем дальше, тем меньше связь.
  6. Реализация заземления, для того чтобы стримеры били в него и замыкали ток. При плохом заземлении стример может бить в катушку.

Как изготовить катушку самостоятельно

Для домашней реализации КТ может применяться любой вариант элементов, необходимо помнить об основном принципе ее работы:

  • надо сделать первичную и вторичную обмотку;
  • к первичной обмотке подается переменное напряжение;
  • возникает магнитное поле, которое будет передавать электрическую энергию на вторичную обмотку;
  • вторичная обмотка создает колебательный контур, в задачу которого входит накапливание энергии, которая будет храниться контуром некоторое время.
  1. Для намотки вторичной обмотки понадобится:
  • двухдюймовая труба;
  • провод длиной 100 метров, с эмалированным покрытием;
  • фитинг из ПВХ-материала двухдюймовый;
  • болты и гайки, шайбы в ассортименте;
  • медная трубка длиной в 3 метра.
  1. Чтобы изготовить конденсатор самостоятельно, нужны следующие детали:
  • стеклянные бутылки, несколько штук;
  • каменная соль;
  • фольга;
  • специальное масло.
  1. Порядок выполнения работ следующий:
  • Наматываем вторичную обмотку, для этого один конец заготовленного провода крепим в верхней части двухдюймовой трубы, начинаем намотку, не допускаем пересечения провода. Намотка вторичной обмотки проводится плотно. Для фиксации катушки применяем малярный скотч, который мотается через 20 витков.
  • Полученную обмотку плотно фиксируем скотчем и покрываем эмаль краской.
  • Для облегчения намотки можно сделать простое приспособление, проволоку направлять через деревянный брусок:

  • Изготавливаем первичную обмотку. Для ее намотки делаем приспособление из металлического фланца, установленного в центр доски и закрепленного болтами с гайками. Медную трубу превращаем в спираль, разрезая ее таким образом, чтобы при ее растяжении образовался конус.
  • Делаем разрядник, для этого понадобится два болта и деревянная коробка.
  • Изготавливаем конденсаторы, для этого в подготовленную бутылку наливаем соленую воду, верх ее обматываем фольгой, через нее пропускаем в бутылку металлическую проволоку.
  • Соединяем провода, как указано на схеме ниже, обязательно выполняем заземление.

На первичной обмотке получается по схеме 7 витков, на вторичной - 600.

Вывод

Изготовить трансформатор Теслы своими руками, применяя навыки электротехники, не так сложно, но рекомендуется делать предварительный расчет, так как может получиться большое устройство, и искры будут значительно нагревать пространство, а также создавать звук громового разряда. Надо учитывать и влияние создаваемого поля на рядом находящиеся электрические устройства.

Рекомендуется сделать простой расчет дуги, ее длины и мощности. Для этого берем расстояние между электродами (сантиметры) и делим его на коэффициент 4,25, затем полученное значение возводим в квадрат - это и будет мощностью дуги. Расстояние определяем следующим образом: берем полученную мощность и извлекаем из нее корень квадратный, затем умножаем на коэффициент 4,25. Длина дуги разряда в 150 сантиметров будет иметь мощность 1246 ватт. Обмотка мощностью в 1000 ватт дает длину разряда в 137 сантиметров.